
The problem of abandoned landmines and
unexploded ordnance is particularly acute when these
objects are near the surface, so that their radar returns
cannot easily be separated from the ground surface re-
sponse. To address this, we pursue simulations here
designed to test methods of sensor deployment and data
processing that exploit angular, positional, and fre-
quency diversity for detection of metallic targets that
are on the order of the subsurface wavelength in size.
Rigorous 2-D computations were performed and results
processed for the angular correlation function (ACF)
approach, in which one performs a coherent average of
received signals from two incidence and observation
angles. Simulations pursue the behavior of the ACF
under realistic ground roughness and moisture content,
target geometry, and highest practical resolution GPR
frequencies.  To achieve an expanded ensemble of cases,
given a single subject ground surface, we average both
over frequencies and overlapping incident beam loca-
tions.

INTRODUCTION

The investigations discussed here are part of a
larger study  in which measurements and simulations
are pursued to test innovations in sensing strategy for
detection of buried objects. A principal motivation is to
improve methods for detecting abandoned landmines
or unexploded ordnance. These objects pose an enor-
mously widespread and urgent problem worldwide, and
also put extraordinary burdens on subsurface sensing
methods.  This is partly because the criteria applied must

be extremely strict, requiring an absolute minimum of
both false positive and false negative judgments as to
the presence of a target sought. This is particularly chal-
lenging in as much as the targets of interest typically
reside in randomized environments. Simply increasing
the sensitivity of sensors tends to inundate the record
with irrelevant clutter. One must pursue creative sens-
ing strategies, by which we mean the totality of sensor
configuration, combination, deployment, and data pro-
cessing methods.

The nature of the problem is illustrated in Figure
1, which shows bistatic results from 2-D numerical so-
lutions for radar reflection from metallic targets em-
bedded in a moist soil with randomly rough surface.
The two targets are approximately the same size, one
elliptically shaped and the other having a mine-like
geometrical cross section (Figure 2). Radar cross sec-
tion values are shown, arbitrarily but consistently scaled,
in negative scattering directions, i.e. back into the quad-
rant occupied by the transmitter.  For these results from
a single frequency, incidence angle, and beam position,
one sees that relative visibility of the subsurface target
depends very much on which target one considers and
which observation angle he chooses.

We must pool data to ascertain ways in which any
of a variety of targets will stand out, reliably and over a
broad range of angular and environmental conditions.
Because our targets of concern are quite localized, one’s
options are limited for achieving an ensemble of sen-
sor data for processing. We proceed by defining a par-
ticular scene (Figure 2) and solving for the scattered
response over a broad frequency band, variety of inci-
dence and observation angles, and beam position com-
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Surface field solution at 800 MHz and 1600 MHz
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binations.  We then investigate the behavior of ACF
processing schemes when applied to that data.

SIMULATION AND PROCESSING APPROACH

The example target (Fig. 2) is 10 cm high, 22 cm
wide at the base, buried with its top 5 cm below the
mean surface. We treat only horizontal polarization here
(E field into the page).  The taper of the beam is illus-
trated by the E field solution magnitudes shown for to-

tal field along the soil surface.  Environmental random-
ness is expressed through the rough soil surface, which
is otherwise homogeneous.  The real part of the soil
dielectric constant is 9, typical of a moist soil, and its
electrical conductivity is 10–3 S/m.

The random surface is generated by selecting a
parent distribution Fourier transform Z(K) of its height
profile, corresponding to a power spectrum W(K) in the
form of a Rayleigh distribution.
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where h is the root mean square height and l the corre-
lation length. This suppresses low frequency surface
shape components and produces many relatively small
bumps, as shown.  We choose Z(K)  proportional to

  
W K( )  for each K, but then randomize the phase of

the component. This produces an ensemble in which
each member surface is different but has the same speci-
fied h and l equal here to 1 cm and 3 cm respectively.
The E field is obtained from numerical solution of an
integral equation in the manner of [1], for each electro-
magnetic frequency, beam position, and surface.

To achieve positional diversity we shift the beam
from side to side over five positions: centered over the
target, and centered over points +25cm and +50cm from
there.  Thus the target remains at least generally within
the main beam, and with each shift of the beam we
change the sample of the surface by a significant
amount. Examination of amplitude and phase of back-
scatter suggests that this is the best we can do with these
surface parameter/ radar wavelength relations. Larger
shifts would take us away from the target.  Scattering
data are pooled from nine frequencies equally spaced
between 800 MHz and 1600 MHz. This appears opti-
mal from the point of the view of the angular correla-
tion study over this band. That is, a coarser frequency
division shows angular correlation effects poorly; a finer
division produces samples that are less independent,
thus bringing no improvement. Altogether, with five
shifts and nine frequencies, we achieve an ensemble of
45 cases for each surface surveyed, over a  total en-
semble with 25 such surfaces.

Recent work suggests that angular correlation func-
tion analysis (ACF) may succeed in suppressing scat-
tered signal clutter from random surface irregularities,
relative to the effect of the target [2]. One computes the
complex product of fields scattered in directions Θs1
and Θs2 produced by incident waves from directions
Θi1 and  Θi2, respectively.

Figure 2. Example target and surface geometry, with
ground surface field solution.
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Figure 1. Bistatic radar cross sections at 1600 MHz for
rough ground with and without buried target.
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When the averaging <...> is performed over
samples of a statistically homogeneous domain, the
fields will decorrelate except along the “memory line,”
determined by the angular relations sin(Θs2) - sin(Θs1)
=  sin(Θi2)  –  sin(Θi1). This applies for any statistically
appropriate source of random reflection in the medium.
The effect of the target represents an underlying coher-
ence that will not decorrelate in the same way over the
sample space. Here we take care to choose a relevant
target with irregularities on the order of the surface per-
turbations, in part to see whether its effect simply aver-
ages out as if it were tantamount to another surface
variation. We will proceed by selecting Θi1, Θi2,

 and
Θs1, viewing the results over Θs2. A major quiestion
has been the width of the memory line, i.e of the region
where surface effects may correlate, obscuring the hope-
fully high ACF value from the target. This relates to
our preoccupation with reliability: how decisively (and
when) will the target case ACF be larger than that from
the surface alone. The ACF/ memory line phenomenon
was originally shown to occur for ensembles of spatial
samples.  Here we must rely more on sampling over
frequencies.

Figure 3 shows bistatic ACF bounds computed with
frequency averaging but without space shifting.  The
ACF magnitude is calculated for each surface, with and
without buried target; the bounds defined as +/– one
standard deviation from ensemble average are deter-
mined at each Θs2. While peaks appear at the memory
line angle of –4.5°, they are quite diffuse and ill-de-
fined. In any case, the locus of ACF magnitudes with
target present is generally higher than without a target.
Next we consider both frequency and spatial averag-
ing. Figure 4 shows quite distinct peaks directly at the

memory line angle. Given the range of positions and
the frequency band at our disposal, this is about as nar-
row a memory line as can be achieved. At observation
angles Θs2 

around –60°, the target would usually though
not always be distinguishable. However for Θs2 

between
about –20° and –55° the distributions overlap badly.
Note also that in both target and non-target cases there
is a prominent secondary lobe; detectability of the tar-
get is distinctly better over these lobes, including the
memory line lobe. Detection performance is not better
in Θs2 

regions that show maximum decorrelation be-
havior (Θs2 

~ –30°). The target seems primarily to in-
tensify the non-zero correlation at the memory line and
secondary lobes.

As a second case we reverse the angular selections,
with results shown in Figure 5. In this diffuse ACF pat-
tern our angular selection has pushed the memory line
to the left beyond real Θs2. When data from space shifts
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Figure 3. ACF bounds: Θi1 = 25°, Θs1 =  –25°,  Θi2 =
50°.
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Figure 5. ACF bounds: Θi1 = 50°, Θs1 =  –50°,  Θi2 =
25°.



is included we obtain Figure 6 where the lobes do not
correspond to theoretically identifiable memory effects.
Again we note primary and secondary off-specular
lobes, with an undesirable amount of overlap between
the target and no-target distributions over much of the
angular range.

CONCLUSION

The promising new technique of angular correla-
tion function analysis has been applied to simulation

cases involving realistic soil parameters and roughness
relative to high resolution GPR wavelengths. A funda-
mental ACF problem lies in obtaining a profitable en-
semble of averaging samples pertaining to a single spot
of ground. In general, increasing the sample pool by
including overlapping space shifts as well as frequency
diversity has improved definition and isolation of the
memory line relative to frequency averaging alone. At
the same time, this has not improved buried target de-
tection performance in the cases investigated. Ironically,
it provided less evidence of the presence of the target
in angular zones of maximum noise decorrelation. In-
terestingly, it seems more to intensify target case ACF
response in memory line and secondary lobe regions,
relative to the no-target case.
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Figure 6. ACF bounds: Θi1 = 50°, Θs1 =  –50°,  Θi2 =
25°.


