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1 Introduction

Unexploded ordnance pose a significant public safety hazard in many parts of the
world. They occur on or near the surface and down to depths of several meters below the
ground. One source of UXO’s are armed conflicts both old and more recent in regions
such as Europe (World Wars I and II), South-East Asia, Afghanistan, Yugoslavia and
parts of Africa. They are also a significant problem in countries such as Canada and
the United States, where they are present in areas used for military training and firing
ranges; largely as vestiges of World War II and the Cold War. It is estimated that 15
million acres of the United States are contaminated by UXO (FAC, 1996), with a clean-
up time-frame in the decades and a staggering cost estimate, using existing technology,
in the tens to hundreds of billions of dollars (GAO, 2001).

The most well established techniques for ordnance detection are magnetics and elec-
tromagnetics (Bulter et al., 1998). These methods are very effective at locating buried
metallic objects such as UXO. However, discriminating between intact UXOs and unin-
teresting objects such as metallic debris and shrapnel is a significant challenge (Bulter et
al., 1998). Often little or no effort is invested in discrimination and, consequently, many
holes are excavated for each ordnance item recovered. For example, Putnam (2001) re-
ports that from 49,521 anomalies excavated at Kaho’olawe, Hawaii, only 3% (or 1,486)
turned out to be UXO. In this report we analyze magnetics data collected at Guthrie
Road, Helana Valley, Montana (Youmans and Daehn, 1999). 840 holes were excavated
with 83 UXOs recovered, thus there was a 10% success rate. It is perhaps a reflection
of the state of our ability to discriminate that this survey was considered a success by
all parties involved.

The simplest form of discrimination is to threshold the collected data in some way
(for magnetics this is usually achieved by first calculating the analytic signal and then
thresholding, Roest et al. (2001)). As the threshold level is decreased, the number of
items that need to be excavated increases. As demonstrated by the Ordnance Detection
and Discrimination Study at the Former Fort Ord (Asch and Staes, 2001), for such
techniques to yield a high probability of detection, a very high false alarm rate results.

Location of UXOs involves the successful detection and identification of compact
metallic objects. Therefore, a better method for discrimination is to parameterize the
characteristics of the target in some way (e.g. by its location, orientation, shape, size
and material properties) and develop a good forward model that allows predicted data
to be generated from a given target realization. Inversion can then be used to find the
set of target parameters that best fits the data. The target parameters are then used
to make decisions regarding discrimination (UXO versus non-UXO) and identification
(what is the ordnance type).

A previous report (Pasion and Oldenburg, 2001) considered the development of an
inversion methodology for time-domain electromagnetic data. In this report, we con-
sider the development of a methodology for total-field magnetics data. Previous work
in this area has been conducted by (amongst others) the Canadian Defence Research
Establishment (McFee, 1989) and the Naval Research Laboratory (Nelson et al., 1998)
and private companies.

Spheroids have been proposed as an approximate parameterization of ordnance by
several authors (McFee, 1989; Altshuler, 1996; Bulter et al., 1998). While the spheroid
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does not capture the top-bottom asymmetry of many ordnance items, close agreement
between observed anomalies over test stands and spheroid fits have been demonstrated
(McFee, 1989; Bulter et al., 1998). Furthermore, the magnetic anomaly from a solid
spheroid has been shown to be very similar to a hollow spheroid (Altshuler, 1996).
Therefore, we will use solid spheroids as the basis of our magnetic modelling of UXO’s.

The response of a spheroid (in fact any compact body) can be decomposed into a
series of moments by a multipole expansion (Stratton, 1941). The response of the dipole
component dominates the anomalies caused by most buried ordnance due to the rapid
falloff with distance of the other components. Consequently, the main inversion routine
developed in this report attempts to recover the dipole moment and position that best
matches an observed anomaly. The recovered dipole moment is then used to rank items
according to the likelihood they are UXO. We prefer such a ranking over a definitive
statement such as ordnance or non-ordnance because it is not possible to make such a
black and white distinction.

The recovered dipole moment can also be used for ordnance identification. There is
some ambiguity in this process because the dipole moment is the product of magneti-
zation with volume. Due to self-demagnetization effects the magnetization can change
significantly as the orientation of the body relative to the Earth’s field changes. Thus
orientation can be traded with volume to produce the same or similar dipole moment.
By recognizing that there are a finite number of ordnance types present in an area (we
build up a library), this ambiguity can be reduced significantly.

To attempt to constrain the orientation we develop two further inversion routines.
The first uses the octupole component of the spheroid, and finds the optimum orientation
and fit for each of the items in our library. That item with the best fit is assumed to be
the source of the anomaly. The second method aims to recover the dipole and quadrupole
moments of an arbitrary axially symmetric body.

No inversion methodology would be complete without an analysis of the uncertainties
in the recovered parameters. The last section of the report considers the development of
a linearized error analysis. We also investigate the distribution of the residuals so that
we can test our assumption of Gaussian statistics.
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2 Magnetic field of a spheroid

The forward modelling task may be stated as follows; calculate the magnetic anomaly
at the arbitrary point (x̂, ŷ, ẑ) given a spheroid of diameter a, aspect ratio e (i.e. length =
ae) and permeability µ oriented at an angle of θ degrees to the horizontal with an
azimuth of φ degrees clockwise from North, at a depth z below the surface and at
the horizontal position (x, y). The geometry of this situation is shown in Figure 1.
Full characterization of the anomaly caused by a spheroid requires the Earth’s field
plus the eight parameters (x, y, z, θ, φ, a, e, µ). For the Earth’s field we use geographical
coordinates; Bo = (Box, Boy, Boz), i.e. x is positive to the East, y is positive to the
North and z is positive upwards. Note that this differs from the definition used to
specify the International Geomagnetic Reference Field (IGRF) where x is positive to
the North, y is positive to the East and z is positive downwards.

z

y

x

r

r’
r’’

(x’,y’,z’)

(x,y,z)

z

z

θ
−φ

Figure 1: Geometry for modelling the response of a spheroid.

The magnetic anomaly of a buried ferrous item arises from both remnant Mrem and
induced magnetization Min; the total magnetization M is then

M = Mrem + Min (1)

Remnant magnetism is present even in the absence of an inducing field and is due to
magnetic moments being locked into alignment once the steel casing cools to below the
Curie temperature in the presence of an external field. We will discuss this type of
magnetism latter but for now we will concentrate on the induced magnetism that arises
because magnetic domains in a ferrous material tend to align with the direction of the
Earth’s field. The ease with which the moments align, and hence the strength of the
magnetism, depends on the magnetic permeability of the steel. For a compact body
such as a spheroid, demagnetization effects become important. This phenomena refers
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to the extent that the induced field is reduced due to the shape of the spheroid. It
arises due to the boundary conditions that the field must satisfy across a discontinuity
in magnetic permeability. A solution of the boundary value problem (Stratton, 1941)
shows that the demagnetization factors are

Fi =
µr − 1

1 + αi(µr − 1)/2
(2)

where µr is the relative permeability (µ = µrµo, where µo = 4π × 10−7 H/m is the
permeability of free space) and the αi’s are factors which depend on the shape of the
spheroid (see Appendix A). Once the relative permeability exceeds a few hundred units,
the induced magnetization becomes virtually independent of susceptibility. This can
easily be seen from Equation 2 with large µr because then

Fi ≈ 2
αi

(3)

This allows us to eliminate µr from our calculations because steel typically has suscep-
tibilities of several hundred to over a thousand (Lide, 2001).

The demagnetization factors, together with the Earth’s field B̂o (in spheroid centered
coordinates), determine the strength of the induced magnetization,

M̂in = µ−1
o FB̂o (4)

where we have written F as a 3× 3 diagonal matrix with (F2, F2, F3) along the diagonal
(remember F1 = F2). An important consequence of demagnetization is that the induced
magnetism can change significantly with orientation. For instance, with e = 4 we find
F2 = 2.1 and F3 = 12.7, so that the magnetization when the spheroid semi-major axis
is aligned with the field is approximately 6 times greater than when it is perpendicular.

Equation 4 returns M̂in in spheroid centered coordinates and assumes B̂o is also
spheroid centered. To use geographical coordinates we utilize the Euler rotation tensor

A =


 cosψ − sinψ 0

sin θ sinψ sin θ cosψ cos θ
cos θ sinψ cos θ cosψ − sin θ


 (5)

to rotate Bo to spheroid centered coordinates and then use its inverse AT to rotate M̂in

to geographical coordinates,

Min = µ−1
o ATFABo (6)

With this uniform magnetization, the magnetic field of the spheroid is given by the
expression

B =
1

4π

∫
S

1
r′

Min · dS (7)

where r′ is the distance from the source to the observation point (Figure 1). An exact
solution of this equation using prolate spheroidal harmonics is known (Stratton, 1941)
but we chose to use a multipole expansion; the details can be found in Appendix A and
McFee (1989). The first non-zero moment is the dipole m which is given by

m = VMin =
π

6
ea3Min (8)
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where V is the volume of the spheroid. The magnetic field from the dipole term is then

B =
µo

4πr3

(
3
r2

[x ·m]x− m
)

(9)

The octupole is the next non-zero moment and is a rank 3 tensor with 27 components.
Symmetry reduces the number of independent components to 6. The specification of
the octupole term is quite complicated, so we leave the details to Appendix A and just
note that its field dies off as r−5.

The rapid falloff of the octupole term with distance means that once the sensor
distance exceeds a few body lengths, the field is essentially dipolar. For example, Fig-
ure 2a plots the dipole and octupole fields from a spheroid model of a 105-mm ordnance
(a = 0.105 m, e = 3.7) orientated at 45o to the vertical, along horizontal lines at a height
of ae and 2ae above the ordnance. The responses are normalized by the maximum dipole
response at that height. At a height of ae the peak of the octupole term is a little over
15% of the peak of the dipole term. For the height 2ae the octupole peak is less than
5% the size of the dipole peak. Figure 2b shows how this ratio rapidly decreases with
increasing height above the ordnance.

Considering that real magnetic profiles are contaminated by noise, observing the
octupole response in the presence of the dipole response will generally be very difficult.
It may be possible when the sensor is very close to the ordnance, or when the noise
levels are low and the spatial positioning extremely accurate. We now examine the
consequence of the dipolar nature of the observed fields on both discrimination and
identification.

Discrimination using magnetometry

The induced dipole moment of a sphere is constrained to lie in the direction of the
applied field. On the other hand, the angle the induced dipole moment of a spheroid
makes with the Earth’s field will vary with its orientation. The angle ψ between the
induced moment and the applied field will be (see Appendix B)

ψ = arccos


 F2 sin2 θ + F3 cos2 θ√
F 2

2 sin2 θ + F 2
3 cos2 θ


 (10)

where θ is the angle of the spheroid semi-major axis with the Earth’s field and F2 and
F3 are the demagnetization factors of the spheroid. In Figure 3a we show the variation
in the angle ψ as the orientation θ changes for a spheroid with an aspect-ratio of 5. The
angle ψ achieves a maximum value that depends on the shape of the spheroid. For a
given aspect ratio, the spheroid orientation θ that results in the maximum value for ψ
is (see Appendix B)

θ = arctan

(√
F 3

3 + F3F 2
2 − 2F2F 2

3

F 3
2 + F2F

2
3 − 2F3F

2
2

)
(11)

The maximum angle for a given aspect ratio is then obtained by substituting Equa-
tion (11) into (10). The variation of this maximum angle with shape is shown in Fig-
ure 3b. Most UXO’s have eccentricities between 3 and 7, so that 55o is an upper bound
on the angle. This suggests a possible method for discrimination (Altshuler, 1996).

When an ordnance hits the ground but does not explode, the impact is usually suf-
ficient to cause shock demagnetization; the shock of impact causes magnetic domains
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Figure 2: (a) Dipole and octupole terms at one and two body lengths distance; (b) Log10

of the ratio of the octupole to dipole terms for a 105-mm projectile at 45o inclination

within the ordnance to become randomly aligned, thus erasing any remnant magnetiza-
tion. On the other hand, when the ordnance explodes, the shrapnel is heated, deformed
and cooled in the presence of the Earth’s field and can acquire permanent magnetism.
Putting all of the above together, it is conjectured that ordnance should not have a
dipole moment that exceeds an angle of 60o from the Earth’s field. The success of this
method of discrimination in reducing false alarms has been demonstrated in Nelson et
al. (1998). However, they did note that subsequent events (such as lightning strikes)
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Figure 3: (a) Change in the moment angle as the orientation varies for an aspect ratio
of 5; and (b) Maximum angle between the induced dipole moment of a spheroid and the
Earth’s field

can cause the ordnance to acquire a remnant magnetization and hence degrade the per-
formance of the discrimination method. Also, the assumption that ordnance are fully
demagnetized on impact may be violated in practice. We shall return to this point later,
but for now assume that the initial conjecture is valid.
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Figure 4: Magnitude of dipole moment (Am2) and angle from Earth’s field for 60, 76,
81, 105 and 155-mm projectiles

Ordnance identification using magnetometry

We now turn to the issue of identifying (or classifying) ordnance items from their dipole
field. For a given spheroid, the induced dipole moment will be dependent on the angle θ
that the spheroid axis makes with the Earth’s field. There is no azimuthal dependence
due to the spheroid’s symmetry. By varying the orientation θ we are able to trace the
change in dipole magnitude and angle with respect to the applied field. Figure 4 shows
these curves as polar plots for five different ordnance items; a 60-mm mortar, a 76-mm
projectile, an 81-mm mortar, a 105-mm projectile and a 155-mm projectile. Fitting
a dipole to observed data will produce a single point in this polar plot that needs to
be matched to an ordnance item. The curves for the 76-mm projectile and the 81-
mm mortar are very similar in certain parts of the plot, indicating that discriminating
between these items may be very difficult. Further, certain orientations lead to identical
dipole moments of both these items to the 60-mm mortar and the 105-mm projectile.

The analysis in the last paragraph indicates that there can be ambiguity in identi-
fication using magnetometry. This fact is rigorously established in Appendix C where
it is shown that for a given spheroid at a particular orientation, there are an infinite
number of other spheroids that could have produced the same dipole moment. For ex-
ample, Figure 5 and Table 1 show the family of spheroids that can produce the same
dipole moment as a 105-mm projectile orientated at 45o to the Earth’s field. The 90-mm
projectile lies very close to this curve emphasizing the difficulty in separating these two
items. The folding over of this curve to encompass spheroids of larger dimension is of
more concern to classification; the 155-mm lies quite close to this branch of the curve.
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There is also a family of oblate spheroids that could produce the same dipole moment;
as could objects of different shapes. This inherent ambiguity has a significant impact
on the methods we develop for ordnance classification in the remainder of this report.
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Figure 5: Spheroid dimensions that can produce the same dipole as a 105-mm shell at
45o inclination to the Earth’s field. The dimensions and orientation angles corresponding
to the labelled points are shown in Table 1.

Diameter (mm) Aspect ratio Angle (degrees)
A 82 5 40.5
B 138 5 84.0
C 138 2.82 57.2
D 327 0.06 53.4
E 327 0.31 33.4

Table 1: Spheroid dimensions, and their angles relative to the Earth’s field, that produce
the same dipole moment as a 105-mm projectile at 45o inclination.
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3 Inversion method for parameter estimation

The previous section demonstrated that, in many situations, it would be difficult to
recover more than the dipole component of a spheroid’s magnetic anomaly. Therefore,
rather than attempting a direct inversion for the spheroid location and dimension, we
apply a two-step procedure:

1. Invert for the best-fitting dipole moment and location;

2. Use the recovered dipole moment for discrimination and ordnance identification.

Due to possible difficulties in properly removing the regional and local geologically
derived fields from a magnetic survey, we also allow for a dc-shift in our dipole model;
this means that seven parameters are required to characterize each anomaly.

Inversion goal: Find the location x = (x, y, z), dipole moment m = (mx,my,mz)
and dc-shift d, that produces the best fit to a set of N total-field observations,
{dobs(xi), i = 1, . . . , N}.

We follow the usual convention in inverse problems and use m to specify the seven
model parameters (it should be clear from the context whether m refers to the model
parameters or the dipole moment). We formulate the inverse problem as a weighted,
least-squares optimization procedure where the goal is to solve

min
m∈�n

φ(m) (12)

The objective function is

φ(m) =
1
2

(F (m) − dobs)TW (F (m) − dobs) (13)

where F (m) is the forward model that produces the predicted data, dobs is the observed
data andW is the data-weighting matrix (ideally the data weighting matrix is the inverse
covariance matrix of the errors). We assume independent, gaussian errors, so that the
data-weighting matrix is diagonal with entries Wii = 1/σ2

i . The objective function may
then be rewritten as

φ(m) =
1
2

N∑
i=1

[
Fi(m) − dobs

i

σi

]2

=
1
2

N∑
i=1

ri(m)2 (14)

where ri(m) is the i-th normalized residual, and we are assuming that there are N
observations.
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Inversion method

We use the interior-reflective Newton method (Branch et al., 1999) to find the best
fitting model parameters. The algorithm is a trust region method which means that the
vector sk that updates the current model, i.e.,

mk+1 = mk + sk (15)

is chosen from a quadratic model of the objective function within a region where this
model can be trusted (hence the term trust region method). A quadratic approximation
to φ(m) is

φ(mk + sk) ≈ φ(mk) + ∇φ(mk)sk +
1
2
sT
k ∇2φ(mk)sk (16)

For a least squares problem we have

∇φ(m) = JT (m)r(m) (17)

where J is the Jacobian matrix which expresses the gradient of the residuals with respect
to each model parameter,

Jij(m) =
∂ri(m)
∂mj

(18)

and the Hessian matrix, H, is given by

H(m) = ∇2φ(m) = JT (m)J(m) +
N∑

i=1

ri(m)∇2ri(m) (19)

The Hessian can be difficult to calculate because it requires second-order derivatives.
In least-squares problems a Gauss-Newton approximation is often used, whereby the
second term in the above equation is ignored. This is a good approximation when the
residuals are small and means that the Hessian can be obtained essentially for free once
the Jacobian has been calculated.

The trust region method involves finding the s (we drop the subscripts denoting
iteration number and the dependence on m for clarity), that satisfies

min
{

1
2
sTJTJs + sTJT r

}
such that ‖Ds‖ ≤ ∆ (20)

where D is a diagonal scaling matrix and ∆ is a positive scalar that controls the trust-
region size. Without the trust region constraint the solution of the above equation can
be found from the normal equations

JTJs = −JT r (21)

The usual trust-region approach is the Levenburg-Marquart algorithm (Marquardt,
1963) where we solve

(JTJ + λI)s = −JT r (22)

The positive parameter λ ensures that the solution meets the constraint ‖Ds‖ ≤ ∆ and
also improves the condition number of the normal equations.
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Instead of minimizing Equation (20) over the full space, the algorithm we use min-
imizes over a two-dimensional subspace, span(s1, s2). The first basis of the subspace is
chosen as the steepest descent direction

s1 = −JT r (23)

and the second is obtained by applying preconditioned conjugate gradients (PCG) to
Equation (21). The PCG iterations are terminated when a negative curvature direction
is discovered, i.e.,

sT
2 J

TJs2 < 0 (24)

or until the residual is sufficiently small; this would be an approximate Gauss-Newton
step. The philosophy behind the method is to force global convergence (by the steep-
est descent or negative curvature) while still achieving rapid local convergence (by the
Gauss-Newton step).

Bounds on model parameters

The Interior-reflective Newton Method allows bounds to be placed on the model pa-
rameters by the user if they are required. We typically impose bounds on the spatial
location of the dipole, e.g.

−2 < x < 2, −2 < y < 2 and − 4 < z < 0 (25)

but do not bound the dipole moment or dc-shift. With lower and upper bounds of [li, ui],
the minimization problem of Equation (12) is changed to

min
m∈�n

{φ(m) : li ≤ mi ≤ ui} (26)

This constrained minimization problem can be solved using a modification of the for-
mulation presented above (Branch et al., 1999).

Starting model

Due to the possible presence of local minima it is important to obtain a good first guess
of the model parameters. To achieve this goal, we use the approach of McFee and Das
(1986), whereby the dipole parameters are analytically obtained from the z-component
of the vector field. Typically, the data available comprise the total-field and we first need
to estimate the z-component. Most anomalies from ordnance have peak amplitudes of
less than 1,000 nT, whereas the Earth’s field is on the order of 50,000 nT. The anomalous
total field ∆Bt is then approximately,

∆Bt 
 αx∆Bx + αy∆By + αz∆Bz (27)

where α = (αx, αy, αz) is a unit vector in the direction of the Earth’s field and ∆B =
(∆Bx,∆By,∆Bz) is the vector magnetic anomaly. Almost all of the continental USA
and Canada has inclinations exceeding 60o so that αz > 0.85 and to a first approximation

∆Bz 
 ∆Bt

αz
(28)

In regions where the z-component of the field is not so dominant, ∆Bz can be obtained
from ∆Bt using well known Fourier transformation techniques (Blakely, 1996).
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The McFee and Das (1986) technique involves first locating the maximum and min-
imum values of the field. Then

• The line joining these two points gives the azimuth of the dipole;

• The distance between the two points is related to the depth of the dipole;

• The locations of the extremum and their relative amplitude can be used to infer
the horizontal location (assumed to lie on the line joining the points);

• The relative amplitudes of the extremum are related to the dipole dip angle;

• The maximum anomaly amplitude is proportional to the dipole magnitude; and

• Comparing the fit of the dipole to the observed data, estimates the dc-shift.

For a nearly vertical dipole there is only a well defined maximum (or minimum).
In that case, the maximum gives the horizontal location, the half-width relates to the
depth and the maximum amplitude scales with the magnitude of the vertical dipole.

Data weighting matrix

For the least-squares data fitting, we weight each data-point dobs
i , with an estimate of

the standard deviation at that point, σi, through the data-weighting matrix,

Wii =
1
σ2

i

=
1

(ε+ γ|dobs
i |)2 (29)

The parameter γ is a percentage error that down-weights the influence of the large data
values; typically we chose 1% ≤ γ ≤ 5%. The parameter ε ensures that the denominator
in the above equation does not get too close to zero when dobs

i approaches zero; typically
we choose ε ∼ 1 nT.

Model parameter scaling

If different model parameters have significantly different scale lengths and typical values
(e.g. position ∼ 1 m; dipole moment ∼ 0.01 Am2), then small favorable changes in some
model parameters may be hidden by the large changes required in others. The ideal is to
have a non-dimensionalized model space, where unit changes in each model parameter
have about the same impact on the objective function. We therefore scale each model
parameter by dividing by the following values,

xtyp = (1, 1, 1)m, mtyp = (0.1, 0.1, 0.1)Am2 and dtyp = 5 nT (30)
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4 Application of the inversion method

Currently, the inversion algorithms are implemented in Matlab and comprise part of
a GUI driven toolbox for geophysical processing developed at The University of British
Columbia. Anomalies are first identified in a data-set using a combination of automatic
and manual interpretation. Then, the inversion algorithm is applied to a user specified
area about each anomaly (typically around 2 × 2 m2 to 3 × 3 m2). The algorithm is
terminated when the objective function decreases by less than a specified tolerance,
or when the gradient falls below a specified value. Both these parameters are user
controlled.

Summary reports can be generated, and the results visually inspected as demon-
strated in Figure 6. We will illustrate the performance of the inversion algorithm on a
large magnetics survey collected as part of an clearance project in the Helana Valley,
Montana.
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Figure 6: Example result of dipole moment inversion; the numbers in brackets are the
estimated standard deviations of the recovered parameters. Azimuth and Dip refer to
the orientation of the dipole in geographic coordinates, while Angle is measured between
the dipole moment and the Earth’s field.
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Figure 7: Some of the 81-mm mortars recovered at Guthrie Rd.

The Guthrie Road, Montana dataset

Once open fields, portions of the Helena Valley were used in the 1950s for military
training by Montana Army National Guard (MTARNG). The National Guard Bureau
funded the remediation project which was divided into two phases focusing on different
impact areas: Diamond Springs and Guthrie Road. We consider the data collected in
the Guthrie Road area in the summer of 1998. G-tek Australia, conducted a magne-
tometer survey of the area using an all-terrain vehicle towing an array of eight cesium
vapor magnetometers (Clark et al., 1999). The system was equipped with a real-time
global positioning system that allowed anomalies to be positioned to within about 20
centimeters.

G-tek found 840 anomalies that were tagged as potential UXO, and these were ex-
cavated in the summer of 1999. We analyze 822 of the anomalies (we couldn’t locate
the data for the remaining 18 anomalies). Table 2 partitions the dig-sheet identifica-
tions into six categories; 76-mm projectiles, 81-mm mortars, large pieces of ordnance,
shrapnel, metallic debris and geology (including anomalies where no metallic items were
found).

A selection of the 81-mm mortars recovered at Guthrie Rd are shown in Figure 7.
Most are intact and have not been substantially deformed by the force of impact. How-
ever, there are a number of deformed but intact items. These tend to have been practice
rounds that were deformed when the black spotter charge detonated on impact. There
are also a number of items that have been split into pieces, these were not classified as
UXO.

We fitted dipole moments using a percentage error of γ = 5% and a base error of
ε = 1 nT . The entire run of inversions took around 1

2 hour on a fairly standard desktop
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computer (Pentium Pro Processor with 800 MHz processor and 1 Gb RAM). We use
the correlation coefficient c between fitted and observed data to determine the goodness
of fit. We found that 85, or around 10% of anomalies had fits with c < 0.7 and 162, or
around 20% had c < 0.8. A break-down according to the dig-sheets of the failed fits is
given in Table 2. Most of the failed fits are from items identified as shrapnel, geology
or metallic debris, with only one ordnance item having a failed fit. We did not visually
inspect every failure, but those we did inspect generally had some type of data issue.
These included overlapping acquisition lines that we couldn’t remove without undue
effort; levelling problems between adjacent lines; and overlapping anomalies. In no case
did the inversion algorithm fail where the data quality was good. In the next sections
we will describe methods for discrimination and identification and apply them to this
data-set.

76-mm 81-mm Large pieces Shrapnel Metal Geology Total
All items 34 49 19 217 377 126 822
Failed fits 0 1 1 13 41 29 85

Table 2: Number of items found during excavation, and the number of fits with c < 0.7
(failed fits)
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5 UXO Discrimination

The last section described how dipole moments and position are fit to each anomaly.
If the data-fit is unsatisfactory the anomaly is marked as such and in a production clean-
up would be excavated as potential UXO. From the viewpoint of data interpreters, we
are unable to provide any reliable information on the target characteristics. On the
other hand, if the fit is satisfactory we attempt to use the recovered dipole moment
to discriminate UXO’s from non-UXO’s. For those items classified as potential UXO
the additional step of ordnance identification is attempted as described in the following
section.

Our method for ordnance discrimination is based on that described earlier in this
report, and is due to Nelson et al. (1998). Briefly, the method relies on the following
two factors;

1. Shock demagnetization causes the remnant magnetism of an ordnance to be vir-
tually eliminated;

2. The induced magnetization in a spheroid with e < 7 is constrained to lie within
about 60o of the Earth’s field (Figure 3).

With a recovered dipole moment of m, our discrimination routine is to calculate the
angle between it and the Earth’s field, Bo,

ψ = arccos(
m ·Bo

‖m‖‖Bo‖) (31)

We can never be certain that all remnant magnetization has been erased by the shock
of impact. Additionally, non-ordnance items, whether remnantly magnetized or not,
may have dipole angles close to the Earth’s field. Consequently, it is not possible to
make a definitive ordnance/non-ordnance distinction for all anomalies. Our preferred
discrimination method is to rank items according to the likelihood they are due to
ordnance. We do this on the basis of the angle ψ; the items with smaller ψ are ranked
higher up the list. In a clean-up operation one then excavates according to the list. If
resources are available to dig 50% of the anomalies then the first 50% of items in the
list are excavated. As a quality control measure a certain number of the lower ranked
items should also be excavated.

The Guthrie Road, Montana dataset

In Figure (8a) we plot the dipole magnitude and angle relative to the Earth’s field of all
the non-ordnance anomalies. Most of the dipoles lie within ±90o of the Earth’s field but
a large number have angles exceeding 60o. On the other hand, the dipole angles for the
ordnance and large ordnance fragments almost all lie within ±60o of the Earth’s field
Figure (8b). These results indicate that significant shock demagnetization has occurred
to the ordnance. There is only one significant outlier, with an angle of around 70o.

In Figure (9a) we give a normalized histogram of the angles for the different categories
of items. There is a clear concentration of ordnance with dipole angles close to the
Earth’s field (we include the significant sized ordnance fragments in this category).
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Figure 8: (a) Polar plot of dipole angle and magnitude (Am2) of non-ordnance items;
(b) Same for ordnance (cross) and significant ordnance fragments (dots).
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Figure 9: Breakdown of dig-sheets identifications and their (a) dipole angle relative to
the Earth’s magnetic field; and (b) dipole magntitude.

Shrapnel tends to have relatively low angles, but there are a significant number of items
with larger angles. There are two simple mechanisms that could explain this distribution:

1. Shock demagnetization sometimes occurs with shrapnel but not always;

2. Shrapnel acquires a remnant magnetization after impact, in the presence of the
Earth’s field.

Metallic debris and geological anomalies can have significant remnant magnetism,
with a definite peak in the distribution between 60o and 100o. We can think of no
plausible explanation for this peak in the distribution of dipole angles.
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Angle Dig Leave Ordnance found Ordnance missed False alarms
55 449 373 78 5 371
60 485 337 81 2 404
65 522 300 82 1 440
70 553 269 82 1 471
75 605 217 83 0 522

Table 3: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle only.

Angle Dig Leave Ordnance found Ordnance missed False alarms
55 449 373 91 11 358
60 485 337 99 3 386
65 522 300 101 1 421
70 553 269 101 1 452
75 605 217 102 0 503

Table 4: Guthrie Road discrimination results, including large pieces of ordnance items.
Discrimination used the dipole angle only.

The results of discrimination using different cut-off angles, for intact ordnance items
are summarized in Table 3, and for ordnance items and large fragments in Table 4. The
tables give the number of items to dig (including the 85 anomalies with poor fits), the
number left in the ground, the ordnance found, the ordnance left and the number of
false alarms. Figure (10) plots the proportion of items recovered versus the number of
holes that need to be excavated. Once the 85 anomalies with poor fits have been dug,
there is a high yield of ordnance as the number of holes increases. However, once about
80% of items have been recovered there is a noticeable slow-down in the ordnance yield;
a lot of holes need to be dug to recover the last few ordnance items. A total of 560
(68%) of holes are required to recover all ordnance items; this number also recovers all
the large ordnance pieces.

Many of the dipole fits for shrapnel and metallic debris have moments with low
magnitude (Figure 9b). None of the intact ordnance items has a dipole magnitude less
than 0.05 Am2. However, seven of the large ordnance fragments have dipole moments
less than this value. The results of rejecting items as non-ordnance based on the dipole
magnitude (as well as a cutoff angle of 75o) are summarized in Tables 5 (for ordnance
only) and 6 (for large fragments as well). With a dipole cutoff of 0.05 Am2 no intact
ordnance items are missed and we can leave 379 items in the ground (46% saving). If
we make the reasonable assumption (for this area) that the smallest item likely to be
found is a 60-mm mortar, the 0.05 Am2 cutoff is quite sensible; the minimum dipole
moment expected from a 60-mm mortar is around 0.055 Am2. Ranking items by their
magnitude results in a lower initial yield of ordnance (Figure 10) than ranking them by
angle. However, the magnitude ranking does not suffer as significant a slow-down in
yield, with a crossover occurring once about 80% of items have been recovered. A total
of 443 (54%) holes need to be excavated to recover all the ordnance.

One additional discrimination method is examined. It uses the idea of remnant
magnetism and requires information on the ordnance items likely to be found in the
area. For the Guthrie Rd data we assume that 60 and 81-mm mortars and 76, 90, 105
and 155-mm projectiles may be present in the area and we use the ordnance dimensions
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Figure 10: Yield of ordnance with number of holes dug for the three discrimination
methods. For all methods it is assumed the 85 anomalies with poor fits are excavated
first.

Mag. (A/m) Dig Leave Ordnance found Ordnance missed False alarms
0.06 383 439 81 2 302
0.05 443 379 83 0 360

Table 5: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle (75o) and magnitude.

listed in Table 7. The method is described in more detail in the next section. Briefly,
we determine the minimum percentage of remnant magnetization required to make the
recovered dipole moment match of the ordnance items. We then rank the items according
to the percentage of remnant magnetism, with lower percentages higher up the list. The
method does not apply to large ordnance fragments as these are not considered in our
modelling.

The results of discriminating by remnant magnetism are summarized in Table 8.
Note, that we also incorporate the angle constraint (< 75o) and the magnitude con-
straint (> 0.05 Am2). Allowing up to half of the dipole anomaly to be due to remnant
magnetization, we can identify all ordnance items and leave 420 anomalies in the ground
(51% saving). The ordnance versus number of holes curve for remnant magnetization
(Figure 10) reveals a high yield of ordnance with increasing number of excavations.
There is only a very slight slowdown in yield once about 95% of ordnance items have
been found. Once 402 (49%) of anomalies are excavated all ordnance items are recovered.
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Mag. (Am2) Dig Leave Ordnance found Ordnance missed False alarms
0.06 383 439 90 12 293
0.05 443 379 95 7 348
0.04 493 329 98 4 395
0.03 558 264 100 2 458
0.02 597 225 102 0 495

Table 6: Guthrie Road discrimination results, including large pieces of ordnance items.
Discrimination used the dipole angle (75o) and magnitude.

Item Diameter (mm) Aspect ratio
60-mm mortar 60 3.78
76-mm projectile 76 3.57
81-mm mortar 81 3.54
90-mm projectile 90 5.0
105-mm projectile 105 3.71
155-mm projectile 155 4.0

Table 7: Ordnance sizes used for the Guthrie Road identification results.

Remnant (%) Dig Leave Ordnance found Ordnance missed False alarms
10 228 594 46 37 182
20 306 516 71 12 235
30 350 472 79 4 271
40 384 438 82 1 302
50 415 407 83 0 332

Table 8: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle (75o), magnitude (< 0.05 Am2) and remnant magnetism.
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6 Ordnance identfication

Identification using the recovered dipole moment

For those anomalies classified as potential ordnance, the next step is to try to identify
the ordnance type. We established in Appendix B and an earlier part of the report that
a given dipole anomaly could have been produced by an infinite number of spheroids
(Figure 5). However, for any given site, there are only a finite number of ordnance
types that are likely to be found. This is the key observation that allows us to identify
ordnance type in the presence of ambiguity.

The dipole induced in a spheroid depends on the angle between the spheroids semi-
major axis and the Earth’s field. There is no azimuthal dependence due to symmetry.
As the ordnance is rotated about the Earth’s field the induced dipole moment will trace
out a curve such as that shown in Figure (4). This represents all dipole moments that
can be produced by the given ordnance item in the absence of remnant magnetism.
This mapping procedure can be repeated for all ordnance items suspected of occurring
in the area. With No ordnance items, a series of curves, {mk(θ), k = 1, . . . , No}, will
be generated. For a particular recovered dipole moment m, we calculate the minimum
distance between it and each of the dipole curves

∆mk = min
0≤θ<2π

‖m− mk(θ)‖ (32)

We assume that any discrepancy is due to remnant magnetism which, as a percentage
of the observed moment, will be

γk = 100
∆mk

‖m‖ (33)

This allows us to rank the ordnance items according to the likelihood they produced
the observed anomaly. The most likely item is that with the lowest percentage remnant
magnetism.

The success of the procedure will depend on;

1. The accuracy of the recovered dipole moment (see the error analysis section);

2. The orientation of the ordnance, because some orientations produce dipoles that
are close to dipoles potentially produced by other ordnance items;

3. How closely the spheroid approximation matches that for real ordnance; and

4. How much remnant magnetism the ordnance maintains after the shock of impact.

The Guthrie Road, Montana dataset

The dipole moments for those anomalies due to 76-mm projectiles are shown in Fig-
ure (11a) and for 81-mm mortars in Figure (11b). Misidentifications for both types of
ordnance appear likely due to the overlapping curves for the difference ordnance types.
In particular the moments for almost all the 76-mm projectiles are in a region where the
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Figure 11: Dipole moments of the Guthrie Road ordnance items for (a) 76-mm projec-
tiles; and (b) 81-mm mortars.

60, 76 and 81-mm calibre ordnances have similar dipole moments. For the 81-mm mor-
tars about half the moments are in a region with only the curve for the 81-mm nearby,
while the other half are in the more complex part of the plot. Our dipole identification
routine involves finding the ordnance curve that is closest to each recovered moment.
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Figure 12: Identification results for the Guthrie Road data using both the dipole and
dipole plus octupole methods for (a) 76-mm projectiles; and (b) 81-mm mortars.

Dipole identification results for 76-mm projectiles are given in (Figure 12a) and for
81-mm mortars in Figure (12b). In 19 out of 34 cases (56%) the 76-mm projectile is
identified correctly. The most common case of misidentification is as a 60-mm mor-
tar; from Figure (4) we see that this is due to overlapping moments between the 60
and 76-mm ordnances. For 81-mm mortars the identification routine is correct in 25
of 48 cases (52%), so that overall we achieve correct identifications 54% of the time.
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Figure 13: One of the practice 81-mm mortars deformed due to the detonation of the
spotting charge.

The most common misidentification for the 81-mm mortar is as a 76-mm projectile (13
times). Some of the errors in misidentification could relate to the deformation of cer-
tain of the 81-mm practice mortars that occurred when the spotter charge detonated
(Figure 13). A spheroid is unlikely to give a very good approximation to this item. Un-
fortunately, while recovered ordnance items were retained after excavation no records
of the anomaly number were kept. Thus, we cannot determine which recovered dipole
moments correspond to deformed ordnance.

Assuming we are using the remnant magnetization method for discrimination and use
a cutoff of 50%, there will be 235 false alarms; items incorrectly identified as ordnance.
Applying the identification method to these false alarms (Figure 14a) is most likely to
cause a misidentification as a 60-mm mortar (the moments are generally quite low).
Metallic debris is more likely to give a false identification as a large ordnance item than
any of the other categories of items (shrapnel, large ordnance pieces and geology).

Seeded test site at The Former Fort Ord, California

The former Fort Ord is located near Monterey Bay in northwestern Monterey County,
California. Since 1917, portions of Fort Ord were used by Army units for maneuvers,
target ranges, and other purposes. Investigation and ordnance removal actions have
been conducted at the former Fort Ord since 1994 when the base closed. In November
1998, the United States Department of the Army instigated an Ordnance Detection and
Discrimination Study (ODDS) at Fort Ord (Asch and Staes, 2001).

The purpose of the Seeded Test was to evaluate the detection and discrimination
capabilities of selected geophysical instruments when ordnance items are buried or
”seeded” below the ground surface in a local site-specific geologic conditions. The seeded
test area consists of five separate, adjacent grids, which were cleared of anomalies to pro-
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Figure 14: Identification results for the Guthrie Road data for (a) dipole method; and
(b) dipole plus octupole method.

vide a controlled testing environment. Two grids are ”known” plots where the items,
depths and orientations of items are made known to all participants. It is these two
known sites (K1 and K2) that we analyze here.

Seventeen different types of ordnance items were buried in the seeded test plots.
Some ordnance scrap and other items were also seeded to allow evaluation of discrimi-
nation capabilities. Additional areas of the plots were excavated and back-filled without
any buried items.

For K1, 5 of the 7 ”empty hole” items (618, 619, 621 to 623) did not produce
acceptable fits, so they would not have been declared as potential ordnance. The other
two ”empty holes” had poorly fitting dipoles and would have been identified as scrap.
A fragment (595) and a signal illumination flare (612) also produced unacceptable fits.

Discrimination and identification results for the remaining items are summarized in
Table 9. Note, that the column marked Interp lists the first choice interpretation for
each item (e.g. scrap, 22 mm projectile, 60 mm ordnance etc). The column marked
Rank shows where the actual ordnance item was ranked. For instance, consider the
2.36” rockets. If the rank was 1 then the item was identified correctly as a 2.36” rocket
(e.g. anomaly 613). If the rank was greater than 1 (say 3), then the 2.36” rocket was
ranked as the third most likely cause of the anomaly (e.g. anomaly 602).

Two of the four fragments were correctly identified as non-ordnance (using a discrim-
ination cutoff of 60o). Six of the twelve 35-mm projectiles were incorrectly classified as
scrap; this may be due to remnant magnetism. Five of the remaining 35-mm projectiles
had the correct identification ranked as one of the top three choices. One of the 2.36”
rockets was classified as scrap, the other three had a 2.36” identification ranked in the
top three (one was correct). The six signal illumination flares could not be identified
correctly, neither could any of the grenades. Overall, the discrimination/identification
results for K1 are not very impressive. We believe part of the reason could be due to
remnant magnetism (the items were not shock demagnetized prior to emplacement). It
may also be a reflection of the generally poor performance of magnetics for small calibre
items (Klaff et al., 2002).

25



Number Item za (m) zr (m) c Angle Interp Rank
620 Empty Hole 0.00 0.47 0.79 127.4 Scrap
617 Empty Hole 0.00 0.29 0.75 97.0 Scrap
599 Fragment 0.30 0.92 0.88 86.1 Scrap
598 Fragment 0.30 0.62 0.90 114.4 Scrap
597 Fragment 0.15 0.28 0.97 48.8 Signals
596 Fragment 0.30 0.41 0.91 55.2 22 mm
616 35-mm 0.61 0.56 0.93 74.0 Scrap
608 35-mm 0.46 0.23 0.85 59.0 22 mm 2
607 35-mm 0.30 0.23 0.82 150.1 Scrap
606 35mm 0.15 0.25 0.98 33.6 37-mm 6
605 35-mm 0.46 0.95 0.91 52.4 Signals 3
604 35-mm 0.61 1.50 0.81 65.3 Scrap
603 35-mm 0.15 0.37 0.90 55.2 22 mm 2
600 35-mm 0.30 0.43 0.86 68.8 Scrap
593 35-mm 0.61 0.53 0.92 38.0 22 mm 3
592 35-mm 0.30 0.44 0.97 87.1 Scrap
591 35-mm 0.61 0.34 0.95 105.6 Scrap
590 35-mm 0.46 0.38 0.96 37.5 60-mm mortar 2
613 2.36” rocket 0.61 0.65 0.96 57.1 Rocket 2 .36” 1
602 2.36” rocket 0.46 0.59 0.98 55.1 Signals 3
594 2.36” rocket 0.61 0.89 0.96 50.8 Rocket 3 .5” 4
586 2.36” rocket 0.61 2.79 0.96 118.2 Scrap
615 Signals 0.15 0.26 0.97 39.7 37-mm 2
614 Signals 0.30 0.61 0.82 82.6 Scrap
611 Signals 0.15 0.33 0.89 43.3 22 mm 3
589 Signals 0.30 1.08 0.89 20.1 22 mm 8
588 Signals 0.30 1.51 0.95 31.6 81-mm mortar 6
610 Hand grenade 0.15 0.08 0.93 49.9 22 mm 12
609 Hand grenade 0.30 0.58 0.77 38.6 22 mm 12
587 Hand grenade 0.30 0.88 0.99 121.5 Scrap
601 Rifle grenade 0.46 1.33 0.78 77.9 Scrap

Table 9: Fort Ord identification results for K1, where za is the actual burial depth, zr
is the recovered depth, c is the correlation coefficient between observed and predicted
data and angle is the angle between the Earth’s field and the recovered dipole moment.

For the K2 plot, good dipole fits could not be obtained for four items, 555, 556 (both,
25-mm projectiles at 46 cm), 569 (fragment at 30 cm) and 574 (signals at 30 cm). The
results for the rest of the items are summarized in Table 10. There were seventeen items
correctly identified as ordnance. Six of these were identified as the correct ordnance
type and five others had the correct ordnance listed in the top three possibilities. The
other six identifications were a long way off and we believe that several of these were
remnantly magnetized; in particular all the stokes mortars and the hand grenade.

Identification using the dipole and octupole

Magnetic anomalies from ordnance are usually dominated by the dipole component;
however, with high quality data we may be able to obtain useable information from
the octupole term. Due to the dipole dominance it would probably not be a good idea
to attempt a direct inversion for ordnance dimensions (local minima, non-uniqueness
etc). Rather, a better method is to obtain an optimum fit for each ordnance item in
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Number Item za (m) zr (m) c Angle Interp Rank
565 Fragment 0.15 0.14 0.93 92.1 Scrap
566 Fragment 0.30 0.34 0.98 113.5 Scrap
567 Fragment 0.15 0.14 0.95 52.3 22 mm
568 Fragment 0.30 0.28 0.89 37.3 37-mm
578 Fragment 0.15 0.22 0.92 32.5 60-mm mortar
579 Fragment 0.30 1.82 0.86 90.1 Scrap
581 Fragment 0.30 0.57 0.90 36.4 22 mm
580 25-mm 0.61 0.59 0.82 72.1 Scrap
553 35-mm 0.61 0.67 0.95 29.1 35-mm 1
559 35-mm 0.61 0.77 0.89 33.2 75-mm 8
575 35-mm 0.30 0.26 0.97 154.0 Scrap
563 37-mm 0.46 0.20 0.81 55.6 22 mm 3
583 37-mm 0.61 0.93 0.85 47.7 35-mm 5
584 37-mm 0.61 1.03 0.89 61.8 Scrap
554 2.36” rocket 0.61 0.89 0.97 21.6 90-mm 9
558 2.36” rocket 0.61 0.81 0.94 49.5 105-mm 3
564 75-mm 0.76 0.67 0.96 12.6 75-mm 1
572 75-mm 0.91 1.85 0.86 85.6 Scrap
560 Signals 0.30 0.50 0.81 124.4 Scrap
576 Signals 0.15 0.16 0.95 99.8 Scrap
573 3” Stokes 1.02 0.63 0.86 60.0 35-mm 10
577 3” Stokes 1.02 1.22 0.89 19.2 155-mm 2
585 3” Stokes 0.91 0.66 0.87 16.2 35-mm 9
561 81-mm 0.91 1.13 0.96 39.5 81-mm mortar 1
571 81-mm 0.91 0.85 0.94 34.8 90-mm 2
557 90-mm 0.76 0.82 0.97 21.3 90-mm 1
570 90-mm 0.76 0.73 0.97 20.2 90-mm 1
562 105-mm 1.22 1.16 0.94 59.7 Rocket 2.36” 3
582 105-mm 1.22 1.50 0.96 17.8 105-mm 1
552 Hand grenade 0.30 0.44 0.92 44.4 Signals 12

Table 10: Fort Ord identification results for K2, where za is the actual burial depth, zr
is the recovered depth, c is the correlation coefficient between observed and predicted
data and angle is the angle between the Earth’s field and the recovered dipole moment

our library, and declare the ordnance with the best fit as the most likely source of the
anomaly. For each item in the library this procedure involves determination of six model
parameters (x, y, z, θ, φ, d), where (x, y, z) is location, θ is the ordnance dip angle relative
to horizontal, φ is the azimuth angle relative to geographic North and d is the dc-shift.

We again use a least-squares formulation and the interior-reflective Newton method.
The data-weighting and parameter bounds are identical to that used for the dipole
inversion (i.e. we only bound the spatial location). For scale factors we use

xtyp = (1, 1, 1)m, (θtyp, φtyp) = (π/2, π/2) radians and dtyp = 5nT (34)

To determine the starting model, we first do a dipole inversion and go through the dipole
identification process. For each ordnance item, the identification process will return the
dip angle θ and azimuth φ that achieved the closest fit to the dipole. These can be
used as the starting orientation with the dipole location used as the starting location,
similarly for the dc-shift. Rather than doing an inversion for every item in the library
we only consider those 3-5 ordnance items with the best dipole fits.
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The Guthrie Road, Montana dataset

We only apply the dipole/octupole identification procedure to those anomalies flagged as
potential UXO by the remnant magnetization technique (with a cutoff of 50% remnant
magnetism). The quality of the fits obtained for the optimum ordnance were around
the same as the dipole fits; sometimes they were slightly worse and sometimes slightly
better.

Identification results for the dipole/octupole method for 76-mm projectiles are given
in Figure (12a) and for 81-mm mortars in Figure (12b). For 76-mm projectiles the
correct identification is achieved for 20 of 34 cases, one better than the dipole method.
However, for the 81-mm mortar correct identification is only achieved for 22 of 48 cases,
three less than the dipole method.

Misidentification results for false alarms are given in Figure (14b). The distribution
of items is very similar to that achieved with the dipole method.

We believe that there are three reasons why the dipole/octupole identification method
does not improve the original dipole identification method.

1. The octupole response is quite small and does not provide significant additional
constraints on the the geometry;

2. The equivalent spheroid is not an accurate enough approximation of an ordnance
item for the octupole contribution to have a positive effect; and

3. The ordnance items are slightly remnantly magnetized which changes the relation-
ship between ordnance orientation and the direction of magnetization.

Identification using the dipole and quadrupole

Thus far, the identification routines we have developed have relied solely on a spheroid
model of ordnance. However, this assumption is overly simplistic since most ordnance
items do not have that degree of symmetry. In particular, the front and tail ends of
ordnance tend to be different: the front is often tapered to provide better aerodynamics
and target penetration, while the tail end is often flat (the tails of mortars don’t matter
because they are usually made of aluminum). Therefore, a more realistic model of
ordnance is an axially symmetric body without front-back symmetry; such a body has
a multipole expansion with both a dipole term and a non-zero quadrupole term (recall
that the quadrupole was zero for a spheroid due to symmetry).

Our intent with this new identification method is to try to use the information in the
quadrupole to constrain the orientation of the body (φ, θ). As we discovered when using
the dipole method, the principal source of ambiguity in identification is our inability
to constrain the orientation of the body. In particular, when the object’s dimension is
changed, one can compensate by changing the object orientation and produce the same
or a very similar dipole moment. If we could constrain the orientation then we could
better constrain the ordnance dimension.

The basis of the idea is that there will be no quadrupole contributions perpendicular
to the axis of symmetry but there will be contributions along the symmetry axis. We
therefore construct a model with these characteristics and use an inversion procedure
to recover a model with the best orientation. Concomitant with this process we also
recover parameters that depend on the shape of the body, as we now explain.
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The dipole moment of an axially symmetric body can be written in the form,

m = µ−1
o ATFABo (35)

where A is the usual Euler rotation tensor and F is a 3 × 3 diagonal matrix with
(F2, F2, F3) along the diagonal. We are assuming axial-symmetry so that F1 = F2.
The demagnetization factors, Fi, given in the above equation, are V Fi times those
previously given in Equation 2, where V is the volume of the body. These volume
modified demagnetization factors contain all the information on the body’s dimensions
that we are attempting to recover.

We are assuming the body is axially symmetric (about the z-axis), therefore the
quadrupole tensor components in the x-y plane are zero (see Appendix A for a deriva-
tion). The body is asymmetric about the x-y plane so that the quadrupole tensor has
non-zero components in the z-direction. The tensor is symmetric M̂q = M̂

T
q and is

therefore defined by the equation,

M̂q =


 0 0 mq1

0 0 mq2

mq1 mq2 mq3


 (36)

where mq1, mq2 and mq3 are dependent on the shape and magnetization of the body.
The above equation is in body-centered coordinates. The quadrupole tensor may be
rotated into the Earth’s frame of reference using the following equation,

Mq = AM̂qAT (37)

The magnetic field due to this quadrupole tensor can be calculated using Equation (A-
11). Ignoring the octupole and any higher order moments, full specification of an axially-
symmetric body therefore involves the following 11 parameters

[x, y, z, φ, θ, F2, F3,mq1,mq2,mq3, d] (38)

where we have again allowed a dc-shift, d.
To invert for the 11 parameter model we use the same least-squares formulation and

Interior-reflective Newton method described previously. The parameter scalings are the
same as those given in Equation (34), with the additional parameters scaled as

Ftyp = (0.01, 0.01)m3 and mqtyp = (0.01, .01, .01)Am3 (39)

Once the model parameters have been recovered we return to our spheroid model of
ordnance and find the object dimensions that reproduce the recovered volume demag-
netization factors, F2 and F3. This is straightforward because the aspect ratio, e solely
determines the ratio F2/F3, while the diameter and aspect ratio together determine the
magnitudes of F2 and F3. On occasion we find that F2 converges towards zero while F3

appears to converge to a sensible value. In that case, we fix the aspect ratio at a typical
value 3 < e < 5 and just solve for the diameter.

The Guthrie Road, Montana dataset

We applied the quadrupole inversion method to all 737 anomalies at Guthrie Rd that
had good dipole fits. Perhaps self-evidently the fits and correlation coefficients for
the dipole/quadrupole model were better than for the dipole model alone. Figure 15
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Figure 15: Quadrupole identification results at Guthrie Road; (a) Recovered aspect-
ratios and diameters; and (b) Histogram of recovered diameters.

summarizes the results of the quadrupole identification. There appears to be some
identification ability but there are a significant number of ordnance items where the
recovered dimensions are inaccurate. In particular, there is a tendency to either recover
too low an aspect ratio and hence too large a diameter or vice-versa.

There are two conclusions that can be drawn from the quadrupole discrimination
results. Firstly, the quadrupole may be unable to provide the required constraints on
the ordnance orientation. Alternatively, there may be enough remnant magnetization
in the body so that our model is not an accurate reflection of reality.

With these issues in mind we trialed one last method for identification using the
quadrupole. This time we allow the dipole moment to vary independently of the
quadrupole; i.e. in place of F1 and F2 in Equation (38) we solve for m = (m1,m2,m3).
Thus there are twelve parameters to find. Our intent is to determine if unmodelled
quadrupole components bias the estimation of the dipole moment.

We applied the method to the Guthrie Road data and then used the recovered dipole
moment to achieve ordnance identification in the usual way. We found that the method
was slightly inferior to the original dipole identification routine. In particular for the
81-mm mortar 23 of the 48 anomalies were identified correctly (compared to 25 of 48),
while for the 76-mm projectile only 16 of 34 cases were correct (compared to 20 of 34).
Thus, we conclude that unmodelled quadrupole components do not negatively affect our
ability to identify using the dipole moment.
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7 Error Analysis

The dipole identification results for Guthrie Road indicate that around 55% of the
time we correctly identify the ordnance type. The 45% misidentifications must be due
to either an incorrect model, remnant magnetism or uncertainty in the recovered dipole
moments. In this section we analyze the uncertainty in recovered dipole moment using
linearized error analysis.

Estimating the covariance matrix of the model parameters

To derive the covariance matrix of the model parameters we follow the development
given in Bard (1974). At the minimum of the objective function the gradient is zero

∇φ(m,d) = 0 (40)

where ∇ is with respect to the model parameters. If we change the data to d + δd we
will change the objective function and hence the position of the minimum will vary to
m + δm. The gradient of the new objective function at the new minimum will be zero.

∇φ(m + δm,d + δd) = 0 (41)

If we expand this gradient in a Taylor series and only keep first order terms we find

∇φ(m + δm,d + δd) = ∇φ(m,d) + ∇2φ(m,d)δm +
∂

∂d
∇φ(m,d)δd = 0 (42)

Recognizing that the ∇2 term is the Hessian and rearranging we find

δm = H−1 ∂

∂d
∇φ(m,d)δd (43)

The covariance matrix of the model parameters is

Vm = E[δmδmT ] (44)

where E[·] is the expectation operator. Substituting Equation (43) into (44), recognizing
that the Hessian and gradient terms are constants (under expectation) and rearranging
terms we find

Vm = H−1 ∂

∂d
∇φ(m,d)T E[δdδdT ]

∂

∂d
∇φ(m,d)H−1 (45)

The covariance matrix of the data is Vd = E[δdδdT ]. Assuming the data-weighting
matrix in our formulation of the inverse problem is the same as the inverse covariance
matrix of the data, the Gauss-Newton approximation to the Hessian is

H = JTV−1
d J (46)

while

∂

∂d
∇φ(m,d) = V−1

d J (47)
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Substitution of Equations (46) and (47) into Equation(45) and simplification reveals
that the covariance matrix is the inverse of the Gauss-Newton approximation to the
Hessian,

Vm = (JTV−1
d J)−1 = H−1 (48)

The above equation can be used to estimate uncertainties in each of the model param-
eters and can also be used to define confidence ellipses of multiple parameters. The
uncertainties obtained through this equation are linearized estimates of the true un-
certainties. Before considering them further we investigate how closely these linearized
estimates would match fully non-linear estimates. If the minimum of the objective
function is m̂ then linearized estimates are equivalent to approximating the objective
function with

φ(m) − φ(m̂) ≈ 1
2

(m − m̂)TH(m − m̂) (49)

If the above equation is a good approximation to the objective function about the
minimum then the linearized uncertainties will be accurate estimates of the true uncer-
tainties. We have compared the objective functions of many anomalies and usually find
a situation such as that illustrated in Figure (16). The linear and non-linear estimates
are very similar for parameters related to the dipole moment, and less so for parameters
related to location (especially the depth). From the perspective of ordnance identifica-
tion it is the uncertainties in the dipole moment that are important, so we can conclude
that the linearized estimates should be accurate for our purposes. We note in passing
that including the second order terms in the Hessian has very little impact on the accu-
racy of the linear approximation, even if the residuals at the solution are large. This is
readily apparent for the dipole components in cartesian coordinates m = (mx,my,mz)
because the second derivatives with respect to these parameters are zero (Equation 9).

Confidence ellipses of multiple parameters

We are principally interested in the joint-uncertainty in the dipole magnitude and an-
gle relative to the Earth’s field because these two parameters control our decisions on
discrimination and identification. A good method for visualizing the joint-uncertainties
is to calculate confidence ellipses; these are contours of equal confidence in the model
parameters. They are usually defined to encompass a certain probability that the model
lies within the defined region. For instance, a one-sigma (or 68.3%) confidence ellipse
would delineate a region that has a 68.3% chance of containing the true model parame-
ters (under the particular statistical assumptions used to define the objective function).

To define the confidence ellipse for r parameters requires that the uncertainties in
the other n − r parameters (assuming there are n parameters in total) are projected
onto the r-dimensional hyperplane under consideration. In turns out (Bard, 1974) that
this projection can be implicitly achieved by calculating the covariance matrix through
inversion of the appropriate r × r subsection of the Hessian matrix. For example, if we
are interested in the joint confidence ellipse for parameters 2 and 5 we would calculate

Vm =

[
H22 H25

H52 H55

]−1

(50)

The principal axes of the ellipse are then obtained by eigenvalue decomposition of Vm,
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Figure 16: Objective function (solid line) and Gauss-Newton approximation to the Hes-
sian (dashed line) about the inversion solution for Target 575, Fort Ord.

Vm = USUT (51)

where S is a diagonal matrix of eigenvalues and U is an orthonormal matrix of eigen-
vectors; each eigenvector is a principal axis of the ellipse. The size of each principal axis
is given by the reciprocal of the corresponding eigenvalue.

The final step is to find the ellipse that lies on the boundary of a specified confidence
region (e.g. 68.3% or the one-sigma error). If the sampling distribution is normal, unbi-
ased and we assume that the covariance matrix Vm is known, then (m−m̂)TV−1

m (m−m̂)
is χ2 distributed with r degrees of freedom (Bard, 1974). The boundary of the ellipse
corresponding to a particular confidence level is found by calculating the value of the χ2

distribution with r degrees of freedom that corresponds to that confidence. For example,
with 2 degrees of freedom, the 68.3% confidence limit has χ2 = 2.298. The contour of
(m− m̂)TV−1

m (m− m̂) with the value 2.298 corresponds to the boundary of the 68.3%
confidence region.

Alternatively, if the covariance matrix is not known and we assume that all observa-
tions are independent (so that Vd = σ2I) then the confidence level is obtained through
the Fr,n−r distribution (Bard, 1974). In that case the value of χ2 calculated above would
be replaced with

rσ2Fr,n−r(γ) (52)
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where γ is the desired confidence limit (γ = 0.683 for the 68.3% confidence level) and σ2

is the sample variance. If the optimum model returned by the minimization routine is m̂
and there are K model parameters then the sample variance is obtained by calculating

σ2 =
1

N −K
N∑

i=1

[
Fi(m̂) − dobs

i

]2
(53)

Finally, if the assumption of Gaussian statistics does not hold, conservative confidence
limits can be calculated by recourse to the Bienaymê-Chebyshev inequality (Bard, 1974).
For the γ confidence limit this replaces the value of χ2 above with

r

1 − γ (54)

The Guthrie Road, Montana dataset

The distribution of residuals for the 660 anomalies at Guthrie Road with correlation
coefficients greater than 0.8 are shown in Figure (17). The curves have been normalized
so that they have an integral of one; thus we are approximating the posterior probability
density function (posterior PDF) of the residuals. The best fitting Gaussian distribution
(with σ = 0.99 nT) provides a poor fit to the residuals. In particular, large residuals are
much more likely than predicted by a normal distribution. In Figure (17) we also show
the best fitting Ekblom distribution (Ekblom, 1973) which has a probability density
function equal to

Pr(x) = c exp

[
(x2 + ε2)p/2

σp

]
(55)

where c is a constant that ensures the PDF integrates to unity. This is a perturbed
version of an Lp-norm and we found best fitting values of σ = 1.16 × 10−4 nT, ε =
0.609 nT and p = 0.224. The correspondence between the observed distribution of
residuals and the Ekblom PDF is excellent. We will consider the good fit of the Ekblom
PDF further in the discussion section of this report.

As the residuals are clearly non-Gaussian, we must be cautious when interpreting
confidence ellipses calculated under the normality assumption. The shape and relative
size of the ellipses are likely to be correct but their absolute values are probably incorrect
(i.e. the 68.3% confidence ellipse won’t correspond to a confidence of 68.3%). However,
the absolute confidence ellipses should provide a rough estimate of the uncertainties
in the parameters. They should also provide a reliable means of comparison of the
uncertainties in recovered parameters for different anomalies.

We calculated confidence ellipses for the dipole magnitude and angle relative to the
Earth’s field, for the anomalies due to 76-mm projectiles and 81-mm mortars at Guthrie
Road (Figure 18). The data-weighting matrix was the identity matrix, with a sample
standard deviation calculated from the residuals by Equation (53). The figures show
the one-sigma (68.3%) and two-sigma (95.4%) confidence ellipses about each recovered
dipole moment (assuming Gaussian statistics). For the 76-mm projectiles all except one
anomaly have very small uncertainties. The one outlier was incorrectly identified as a
105-mm projectile. For the 81-mm mortars all anomalies have very small uncertainties.
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Figure 17: Distribution of residuals for the 660 anomalies at Guthrie Rd with correlation
coefficient greater than 0.8.

We also calculated confidence ellipses using the very conservative Bienaymê-Chebyshev
inequality (Figure 19). The confidence ellipses are significantly larger than those re-
turned under the normal assumption. If the real confidence ellipses were this large, then
uncertainty in the recovered moment would be a contributing factor in misidentifications
(especially for 76-mm projectiles). However, the real confidence ellipses would have a
size intermediate between the Gaussian and Bienaymê-Chebyshev estimates. This would
imply that misidentification is sometimes, though probably not that often, caused by
uncertainty in the recovered moment. Misidentifications are more likely to occur due to
modelling deficiencies and/or remnant magnetization.

We also calculated confidence ellipses (under the normal assumption) for the anoma-
lies due to metallic debris and geology (Figure 20). For the metallic debris many of the
uncertainties are quite low but there are a few items with much higher uncertainties.
For the anomalies due to geology the uncertainties are generally much higher. In many
cases the recovered angle is around 60o but the uncertainty is high. This is a critical area
for making discrimination decisions so we can conclude that, for geological anomalies,
uncertainty in dipole angle can have a significant impact on discrimination.
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Figure 18: One sigma (68.3%) and two sigma (95.4%) confidence ellipses, assuming
Gaussian statistics, about the recovered dipole moments for (a) 76-mm projectiles; and
(b) 81-mm mortars.
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Figure 19: Worst case scenario for one sigma (68.3%) and two sigma (95.4%) confidence
ellipses about the recovered dipole moments for (a) 76-mm projectiles; and (b) 81-mm
mortars.
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Figure 20: One sigma (68.3%) and two sigma (95.4%) confidence ellipses about the
recovered dipole moments for (a) metallic debris; and (b) geological anomalies.

37



8 Discussion

In this report we have described a successful inversion method for recovering the
position and dipole moment from a total-field magnetic anomaly. The inversion uses
a least-squares formulation and an interior-reflective Newton method to minimize the
objective function. A starting model is defined using an analytical method based on
approximating the vertical component of the magnetic field. The inversion method is
very fast and reliable; our Matlab implementation requires only a few seconds to recover
the parameters for each anomaly.

The recovered dipole moments can be used to make discrimination decisions by
recourse to the phenomena of shock demagnetization. Complete shock demagnetization
may not occur for all ordnance items all the time. Additionally, non-ordnance, even
though they may be remnantly magnetized, might be orientated so that their dipole
moments lie close to the Earth’s field. This means that it is not possible to make a
definitive ordnance/non-ordnance decision. Rather, we prefer to rank anomalies, with
items most likely to be UXO higher up the list. We investigated three such ranking
procedures; (i) dipole angle, (ii) dipole angle and magnitude and (iii) percentage of
remnant magnetism, and found that the remnant magnetization ranking was the best.
With this method all ordnance would have been recovered after only half of the anomalies
had been excavated. This included 85 anomalies with poor dipole fits that only yielded
one UXO. The criterion used to select potential UXO may need to be revised to minimize
the number of anomalies where we are unable to make reliable inferences about the
bodies origin.

Linearized error analysis indicates that the angle between the recovered dipole mo-
ment and the Earth’s field for ordnance items is relatively well constrained. Therefore,
uncertainty in the recovered dipole moment is unlikely to strongly influence the dis-
crimination ranking. For items identified as geology, the confidence ellipses were much
larger. Consequently, the position of these items in the ranking is strongly influenced
by uncertainty.

The discrimination method was very successful at Guthrie Road but could not be
reliably applied to the seeded sites at Fort Ord. This is a consequence of remnant mag-
netization and emphasizes the importance of shock demagnetization to the viability of
the method. Additional work needs to be undertaken to determine the circumstances
where shock demagnetization occurs. For instance, the recovered dipole moments of
several of the 81-mm mortars at Guthrie Road had relatively large dipole angles, in-
dicating the presence of some remnant magnetism. Perhaps the lower impact velocity
of mortars compared to artillery projectiles causes only partial shock demagnetization;
this needs to be investigated further.

Identification of the ordnance type using the recovered dipole moment is difficult due
to non-uniqueness. The dipole moment is the product of volume with the magnetization
vector. When the volume changes, self-demagnetization as the orientation of the body
is varied can change the magnetization vector and thus produce an identical or similar
dipole moment. However, recognizing that there are only a finite number of ordnance
types in an given area, makes identification using the recovered dipole moment feasible.
At Guthrie Road correct identification could be achieved about 55% of the time.

One of the key factors that influences successful identification is obtaining the correct
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trajectory of moment magnitude and angle for a given ordnance item. We use a spheroid
approximation to calculate this trajectory. Modelling of shapes that more closely ap-
proximate real ordnance should be undertaken in order to determine the reliability of
the spheroid approximation.

A significant cause of misidentification is the inability of the dipole moment to con-
strain the orientation of the causative body. In an attempt to overcome this problem we
developed inversion routines that recover information on the quadrupole and octupole
components of the body. The dipole/octupole method we developed uses a spheroid
approximation of ordnance to estimate both the dipole and octupole moments. No sig-
nificant improvement in identification over the dipole method was found. This could
be due to one or more of the following: (i) remnant magnetization; (ii) rapid falloff of
the octupole component with distance so that it is unable to constrain the orientation;
and (iii) the spheroid provides a poor approximation to the octupole moment of real
ordnance.

The quadrupole method relaxed the requirement of top-bottom symmetry enforced
by a spheroid approximation and attempted to recover the dipole and quadrupole mo-
ments of an arbitrary axially symmetric body. The fits to the data were improved
slightly but no advantages for identification were realized. The cause is likely due to one
or more of the following: (i) remnant magnetization; (ii) the inability of the quadrupole
component to constrain the orientation; and (iii) inadequacy of the model.

The failure of the quadrupole and octupole methods to improve identification may
imply that analysis of magnetic data alone does not provide enough information to
constrain the objects orientation. One possible method to provide this constraint is by
joint inversion of magnetic and electromagnetic data; either single or multiple channel
time domain EM or frequency domain EM. Most EM sensors illuminate the target from
multiple directions and are consequently more sensitive to orientation (in contrast the
direction of the Earth’s field is fixed). In return, the magnetics may provide valuable
depth constraints that are difficult to obtain with EM alone (Pasion and Oldenburg,
2001).

Linearized error analysis was used to estimate individual parameter uncertainties and
joint confidence ellipses. The linear approximation provides an accurate model of the
objective function about the minimum. However, the residuals do not follow a Gaussian
distribution so that reliable confidence ellipses could not be defined. Additionally, the
upper bound provided by the Bienaymê-Chebyshev inequality is very conservative and
probably returns confidence ellipses that are much larger than required. A recommen-
dation for future work is to attempt to calculate confidence ellipses using non-Gaussian
statistics.

The residuals were found to follow an Ekblom distribution, yet we minimized a
measure derived from Gaussian statistics. A reformulation of the problem using an
Ekblom distribution as a measure of data misfit is therefore recommended. The resulting
objective function would need to be solved by a different optimization algorithm than
the one used here. Algorithms for the solution of this optimization problem are well
known and include iteratively reweighted least squares and Newton’s method (Watson,
1980; Ekblom, 1987). Implementation of the new optimization method would enable a
thorough investigation to be made on the influence the choice of the measure of data
misfit has on the recovered model. This is an issue often glossed over when solving
inverse problems and this report was no exception.
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9 Conclusions and Recommendations

A dipole inversion method was developed and successfully applied to the discrim-
ination and identification of magnetic anomalies at Guthrie Road Montana. The dis-
crimination method had the potential to reduce the number of excavations by half, yet
still yielded all the ordnance. Identification of the causes of the anomalies is difficult
using the recovered dipole moment due to non-uniqueness. However, by recognizing that
there are a finite number of ordnance types, correct identification could be achieved in
about 55% of cases. Extension of the inversion method to recover either quadrupole of
octupole moments did not improve our ability to discriminate or identify.

We recommend the following areas as directions for future research.

1. Shock demagnetization: The extent to which this phenomena occurs should be
investigated further because shock demagnetization is central to the success of
discrimination using magnetic data.

2. Magnetic modelling of ordnance: The trajectory of the modelled dipole moment
magnitude and angle determines our identification decisions. Therefore, the agree-
ment between the moments returned by a spheroid approximation and a more
realistic ordnance shape should be investigated further.

3. Joint inversion of magnetics and electromagnetics: Identification difficulties in
magnetics are caused by an inability to constrain the orientation of the causative
body. The ability of time or frequency domain electromagnetics to constrain the
orientation needs to be investigated. Conversely, magnetics may provide valuable
depth information that can be exploited by the EM inversion.

4. Error analysis using non-Gaussian statistics: The residuals do not follow a Gaus-
sian distribution so uncertainty estimates based on a more realistic statistical
distribution should be investigated.

5. Robust measures of data misfit: The problem should be reformulated using a more
realistic measure of data misfit (the Ekblom norm), and methods implemented to
solve the modified inversion problem.
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Appendix A: Multipole Expansion

In this appendix we give a brief derivation of the multipole expansion of a magnetic
body, and in particular derive the equations relevant to a spheroid. Our derivations
closely follow those given in McFee (1989).

The scalar potential, φ(r) of a body with magnetization M is given by

φ(r) =
1

4π

∫
V

M · ∇(
1
r′

)dV (A-1)

where r′ is the distance from the source to the observation point (Figure 1). Expanding
the gradient and using the divergence theorem we find

φ(r) =
1

4π

(∫
S

1
r′

M · dS −
∫

V

1
r′
∇ · MdV

)
(A-2)

If the induced field inside the body is uniform and parallel (which it is for a spheroid),
which eliminates the second term in the above equation because then ∇ · M = 0. The
multipole method proceeds by expanding 1

r′ as a Taylor series about the origin,

φ(r) =
1

4πr

∫
S
M · dS +

[
∂

∂xi

1
4πr

] ∫
s
xiM · dS +[

∂2

∂xi∂xj

1
4πr

]
1
2!

∫
S
xixjM · dS +

[
∂3

∂xi∂xj∂xk

1
4πr

]
1
3!

∫
S
xixjxkM · dS + ...) (A-3)

where repeated indices imply that summation convention is to be used. The scalar
potential from a 2n pole with moment m(n)

ij... is given by the expression

φ(2n) =
m

(n)
ij...

4πn!
∂n

∂xi∂xj . . .

[
1
r

]
(A-4)

from which it follows that the first four moments are

m(0) =
∫

S
M · dS (A-5)

m
(1)
i =

∫
S
xiM · dS (A-6)

m
(2)
ij =

∫
S
xixjM · dS (A-7)

m
(3)
ijk =

∫
S
xixjxkM · dS (A-8)

In order the moments are the scalar monopole m(0), the vector dipole m(1), the rank 2
tensor quadrupole m(2), and the rank 3 tensor octupole m(3). Magnetic monopoles do
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not exist which means that the monopole term is zero. Expansion of the dipole term
reveals that the dipole moment is the product of the magnetization with the volume,

m(1) = MV (A-9)

Due to the symmetry of the spheroid the quadrupole term is zero. After the dipole, the
next non-zero term is the octupole; specification of the octupole components is tedious
so we refer the interested reader to McFee (1989).

The magnetic field (in the i-th direction) due to the dipole component is given by
the expression

B
(1)
i =

µo

4πr3

(
3
r2

[x ·m(1)]xi −mi

)
(A-10)

Although zero for the spheroid we will use the quadrupole term later, its field is,

B
(2)
i =

3µo

8πr5
(
−xim

(2)
jj − xj(m

(2)
ij +m(2)

ji ) + 5r−2xixjxkm
(2)
jk

)
(A-11)

and for the octupole the field is,

B
(3)
i =

µo

8πr5
(
3m(3)

ijj − 15r−2
[
xixjm

(3)
jkk + xjxkm

(3)
ijk

]
+ 35r−4xixjxkxlm

(3)
jkl

)
(A-12)

It remains to find the magnetization vector for a spheriod. A solution of the boundary
value problem (Stratton, 1941) shows that the demagnetization factors are

Fi =
µr − 1

1 + αi(µr − 1)/2
(A-13)

where µr is the relative permeability (µ = µrµo),

α1 = α2 =
e(e+ E)
e2 − 1

(A-14)

and

α3 =
−2e(e−1 + E)

e2 − 1
(A-15)

with

E =
log(e−√

e2 − 1)√
e2 − 1

(A-16)

for a prolate spheroid (e > 1) and

E =
arctan( e√

1−e2
) − π/2

√
1 − e2 (A-17)

for an oblate spheroid (e < 1). For the special case of a sphere (e = 1) then

α1 = α2 = α3 =
2
3

(A-18)
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The demagnetization factors together with the Earth’s field Bo (in spheroid centered
coordinates), determine the strength of the induced magnetization,

M = µ−1
o FBo (A-19)

where we have written F as a 3× 3 diagonal matrix with (F2, F2, F3) along the diagonal
(because F1 = F2).

Multipole expansion for an axi-symmetric body

In going from the general equation (A-2) for a magnetized body to that for a spheroid,
we used the fact that the magnetization inside the body was constant so that ∇·M = 0.
For a general axi-symmetric body this is no longer true and there is an extra contribution
to each of the moments. For the dipole,

m
(1)
i =

∫
S
xiM · dS−

∫
V
xi∇ · MdV (A-20)

and using the identity∫
V
φM · ∇φdV =

∫
S
φM · dS −

∫
V
φ∇ ·MdV, (A-21)

we find

m
(1)
i =

∫
V

M · ∇xidV

=
∫

V
MidV (A-22)

Thus the dipole moment is just the integration of the magnetization over the volume
of the body. Most ordnance items are either cylinder like with a pointed front (e.g.
most artillery projectiles) or close to a spheroid shape (e.g. mortars, the fins can be
ignored as they are usually aluminum). For an infinite cylinder the field lines are con-
stant within the body. Therefore, for a projectile any changes in magnetization will be
concentrated at the ends of the body, and will generally make only a small contribution
to the multipole moments. For a mortar, the shape is close to second order (Stratton,
1941) and hence the magnetization direction will be approximately constant. Thus,
changes in magnetization direction should not make a significant contribution to the
observed magnetic anomaly.

Using an analogous development to the dipole, the quadrupole moment can be shown
to be equal to

m
(2)
ij =

∫
V

M · ∇(xixj)dV

=
∫

V
(Mixj +Mjxi)dV (A-23)

Assuming that changes in magnetization can be ignored implies that

m
(2)
ij = Mi

∫
L
dx3

∫
S(x3)

xjdS +Mj

∫
L
dx3

∫
S(x3)

xidS (A-24)
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where L is the length of the body parallel to the symmetry axis, z = x3 and S(x3) is a
slice of the body perpendicular to the axis of symmetry. Due to symmetry each of the
integrals over S(x3) are zero for i or j = 1 or 2, from which it follows that

m
(2)
ij = 0 for any i, j = 1 or 2 (A-25)

The quadrupole moment is symmetric m(2)
ij = m(2)

ji so that the full moment tensor can
then be written as (where we have dropped the (2) subscript),

M =


 0 0 m13

0 0 m23

m13 m23 m33


 (A-26)
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Appendix B: Constraints on Dipole Orientation

The angle the induced dipole moment in a spheroid makes with the Earth’s field
cannot exceed a certain value. In this appendix we derive the equations which specify
this upper bound. We assume the Earth’s field is at an angle θ to the spheroid symmetry
axis and align the z-axis of our coordinate system with the symmetry axis. We can then
choose the x-axis so that it is perpendicular to the Earth’s field. In this coordinate
system

bo = bo(0, sin θ, cos θ)T (B-1)

The spheroid diameter a and aspect ratio e determine the demagnetization factors, F2

and F3, so that the induced dipole moment m is,

m = V bo(0, F2 sin θ, F3 cos θ)T (B-2)

where V is the volume of the spheroid. The angle ψ between the Earth’s field and the
dipole moment is

cosψ =
bo · m

‖bo‖‖m‖ (B-3)

which, on substitution of Equations (B-1) and (B-2), becomes

cosψ =
F2 sin2 θ + F3 cos2 θ√
F 2

2 sin2 θ + F 2
3 cos2 θ

(B-4)

After differentiating this equation by θ, setting the result to zero and extensive
algebraic manipulation we find

θ = arctan

(√
F 3

3 + F3F 2
2 − 2F2F 2

3

F 3
2 + F2F 2

3 − 2F3F 2
2

)
(B-5)

This orientation of the spheroid symmetry axis relative to the Earth’s field makes the
angle between the induced dipole and the Earth’s field a maximum. This maximum
angle is obtained by substituting Equation (B-5) into Equation (B-4).
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Appendix C: Ambiguity in the Dipole Solution

Once the sensor distance exceeds a few body lengths distance away from the spheroid,
the field is essentially dipolar. In such cases, inversion for spheroid dimensions has an
inherent ambiguity: many different spheroid diameters and aspect-ratios can reproduce
the observed dipole. To characterize this ambiguity we chose our coordinate system so
that the z-axis is aligned with the Earth’s field,

Bo = (0, 0, Bo)T (C-1)

We want to determine if the dipole m̂ from a particular spheroid (diameter a and
aspect-ratio e) can match an observed dipole moment m. Now the induced dipole for
the spheroid is given by the following equation

m̂ = VAT FABo (C-2)

Expanding this equation we find

m̂ =
Boπea

3

6µo


 (F2 − F3) cos θ sin θ sinψ

(F2 − F3) cos θ sin θ cosψ
F2 cos2 θ + F3 sin2 θ


 (C-3)

Now we want to find a, e, θ and ψ so that m̂ = m. We can find an expression for the
spheroid diameter by equating the norms of the two dipole moments, resulting in

a3 =
6µo‖m‖

Boπe
√
F 2

2 cos2 θ + F 2
3 sin2 θ

(C-4)

For ψ we use,

m1

m2
=
m̂1

m̂2
=

sinψ
cosψ

= tanψ (C-5)

which leads to

ψ = arctan
(
m1

m2

)
(C-6)

This implies that the spheroid has the same azimuth as the dipole moment.
Determination of θ is a little more difficult. We start by using the second row of

Equation (C-3) and substitute in Equation (C-4) for the diameter,

m2

cosψ‖m‖ =
(F2 − F3) cos θ sin θ√
F 2

2 cos2 θ + F 2
3 sin2 θ

(C-7)

Note that if cosψ = 0 we would use the first row of Equation (C-3) to derive an equation
in terms of m1 and sinψ . Let the LHS of Equation (C-7) be ω, expand out the square-
root on the denominator of the RHS, and use the substitution

sin2 θ = 1 − cos2 θ (C-8)
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After some algebraic manipulation Equation (C-7) reduces to

(F2 − F3)2 cos4 θ
[
ω2(F 2

2 − F 2
3 ) − (F2 − F3)2

]
cos2 θ + ω2F 2

3 (C-9)

This is a quadratic equation in cos2 θ which has a real solution if

∆ = b̂2 − 4âĉ ≥ 0 (C-10)

where

â = (F2 − F3)2 (C-11)
b̂ = ω2(F 2

2 − F 2
3 ) − (F2 − F3)2 (C-12)

ĉ = ω2F 2
3 (C-13)

The solution in terms of θ is then

θ = ± arccos



√

−b̂±√
∆

2â


 (C-14)

The ± terms in the above equation emphasize that when ∆ > 0 there are actually two
possible solutions.

Determination of which spheroids can reproduce the observed dipole proceeds as
follows. Firstly, we chose an aspect-ratio e and calculate the demagnetization factors in
the usual way. We then substitute Equations (C-11) to (C-13) into Equation (C-10) to
determine if a solution can be found for this aspect-ratio. If it can, we calculate θ by
Equation (C-14), and finally we calculate the spheroid diameters (usually there will be
two) by Equation (C-4).
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1 Introduction

Unexploded ordnance pose a significant public safety hazard in many parts of the
world. They occur on or near the surface and down to depths of several meters below the
ground. One source of UXO’s are armed conflicts both old and more recent in regions
such as Europe (World Wars I and II), South-East Asia, Afghanistan, Yugoslavia and
parts of Africa. They are also a significant problem in countries such as Canada and
the United States, where they are present in areas used for military training and firing
ranges; largely as vestiges of World War II and the Cold War. It is estimated that 15
million acres of the United States are contaminated by UXO (FAC, 1996), with a clean-
up time-frame in the decades and a staggering cost estimate, using existing technology,
in the tens to hundreds of billions of dollars (GAO, 2001).

The most well established techniques for ordnance detection are magnetics and elec-
tromagnetics (Bulter et al., 1998). These methods are very effective at locating buried
metallic objects such as UXO. However, discriminating between intact UXOs and unin-
teresting objects such as metallic debris and shrapnel is a significant challenge (Bulter et
al., 1998). Often little or no effort is invested in discrimination and, consequently, many
holes are excavated for each ordnance item recovered. For example, Putnam (2001) re-
ports that from 49,521 anomalies excavated at Kaho’olawe, Hawaii, only 3% (or 1,486)
turned out to be UXO. In this report we analyze magnetics data collected at Guthrie
Road, Helana Valley, Montana (Youmans and Daehn, 1999). 840 holes were excavated
with 83 UXOs recovered, thus there was a 10% success rate. It is perhaps a reflection
of the state of our ability to discriminate that this survey was considered a success by
all parties involved.

The simplest form of discrimination is to threshold the collected data in some way
(for magnetics this is usually achieved by first calculating the analytic signal and then
thresholding, Roest et al. (2001)). As the threshold level is decreased, the number of
items that need to be excavated increases. As demonstrated by the Ordnance Detection
and Discrimination Study at the Former Fort Ord (Asch and Staes, 2001), for such
techniques to yield a high probability of detection, a very high false alarm rate results.

Location of UXOs involves the successful detection and identification of compact
metallic objects. Therefore, a better method for discrimination is to parameterize the
characteristics of the target in some way (e.g. by its location, orientation, shape, size
and material properties) and develop a good forward model that allows predicted data
to be generated from a given target realization. Inversion can then be used to find the
set of target parameters that best fits the data. The target parameters are then used
to make decisions regarding discrimination (UXO versus non-UXO) and identification
(what is the ordnance type).

A previous report (Pasion and Oldenburg, 2001) considered the development of an
inversion methodology for time-domain electromagnetic data. In this report, we con-
sider the development of a methodology for total-field magnetics data. Previous work
in this area has been conducted by (amongst others) the Canadian Defence Research
Establishment (McFee, 1989) and the Naval Research Laboratory (Nelson et al., 1998)
and private companies.

Spheroids have been proposed as an approximate parameterization of ordnance by
several authors (McFee, 1989; Altshuler, 1996; Bulter et al., 1998). While the spheroid
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does not capture the top-bottom asymmetry of many ordnance items, close agreement
between observed anomalies over test stands and spheroid fits have been demonstrated
(McFee, 1989; Bulter et al., 1998). Furthermore, the magnetic anomaly from a solid
spheroid has been shown to be very similar to a hollow spheroid (Altshuler, 1996).
Therefore, we will use solid spheroids as the basis of our magnetic modelling of UXO’s.

The response of a spheroid (in fact any compact body) can be decomposed into a
series of moments by a multipole expansion (Stratton, 1941). The response of the dipole
component dominates the anomalies caused by most buried ordnance due to the rapid
falloff with distance of the other components. Consequently, the main inversion routine
developed in this report attempts to recover the dipole moment and position that best
matches an observed anomaly. The recovered dipole moment is then used to rank items
according to the likelihood they are UXO. We prefer such a ranking over a definitive
statement such as ordnance or non-ordnance because it is not possible to make such a
black and white distinction.

The recovered dipole moment can also be used for ordnance identification. There is
some ambiguity in this process because the dipole moment is the product of magneti-
zation with volume. Due to self-demagnetization effects the magnetization can change
significantly as the orientation of the body relative to the Earth’s field changes. Thus
orientation can be traded with volume to produce the same or similar dipole moment.
By recognizing that there are a finite number of ordnance types present in an area (we
build up a library), this ambiguity can be reduced significantly.

To attempt to constrain the orientation we develop two further inversion routines.
The first uses the octupole component of the spheroid, and finds the optimum orientation
and fit for each of the items in our library. That item with the best fit is assumed to be
the source of the anomaly. The second method aims to recover the dipole and quadrupole
moments of an arbitrary axially symmetric body.

No inversion methodology would be complete without an analysis of the uncertainties
in the recovered parameters. The last section of the report considers the development of
a linearized error analysis. We also investigate the distribution of the residuals so that
we can test our assumption of Gaussian statistics.
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2 Magnetic field of a spheroid

The forward modelling task may be stated as follows; calculate the magnetic anomaly
at the arbitrary point (x̂, ŷ, ẑ) given a spheroid of diameter a, aspect ratio e (i.e. length =
ae) and permeability µ oriented at an angle of θ degrees to the horizontal with an
azimuth of φ degrees clockwise from North, at a depth z below the surface and at
the horizontal position (x, y). The geometry of this situation is shown in Figure 1.
Full characterization of the anomaly caused by a spheroid requires the Earth’s field
plus the eight parameters (x, y, z, θ, φ, a, e, µ). For the Earth’s field we use geographical
coordinates; Bo = (Box, Boy, Boz), i.e. x is positive to the East, y is positive to the
North and z is positive upwards. Note that this differs from the definition used to
specify the International Geomagnetic Reference Field (IGRF) where x is positive to
the North, y is positive to the East and z is positive downwards.

z

y

x

r

r’
r’’

(x’,y’,z’)

(x,y,z)

z

z

θ
−φ

Figure 1: Geometry for modelling the response of a spheroid.

The magnetic anomaly of a buried ferrous item arises from both remnant Mrem and
induced magnetization Min; the total magnetization M is then

M = Mrem + Min (1)

Remnant magnetism is present even in the absence of an inducing field and is due to
magnetic moments being locked into alignment once the steel casing cools to below the
Curie temperature in the presence of an external field. We will discuss this type of
magnetism latter but for now we will concentrate on the induced magnetism that arises
because magnetic domains in a ferrous material tend to align with the direction of the
Earth’s field. The ease with which the moments align, and hence the strength of the
magnetism, depends on the magnetic permeability of the steel. For a compact body
such as a spheroid, demagnetization effects become important. This phenomena refers
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to the extent that the induced field is reduced due to the shape of the spheroid. It
arises due to the boundary conditions that the field must satisfy across a discontinuity
in magnetic permeability. A solution of the boundary value problem (Stratton, 1941)
shows that the demagnetization factors are

Fi =
µr − 1

1 + αi(µr − 1)/2
(2)

where µr is the relative permeability (µ = µrµo, where µo = 4π × 10−7 H/m is the
permeability of free space) and the αi’s are factors which depend on the shape of the
spheroid (see Appendix A). Once the relative permeability exceeds a few hundred units,
the induced magnetization becomes virtually independent of susceptibility. This can
easily be seen from Equation 2 with large µr because then

Fi ≈ 2
αi

(3)

This allows us to eliminate µr from our calculations because steel typically has suscep-
tibilities of several hundred to over a thousand (Lide, 2001).

The demagnetization factors, together with the Earth’s field B̂o (in spheroid centered
coordinates), determine the strength of the induced magnetization,

M̂in = µ−1
o FB̂o (4)

where we have written F as a 3× 3 diagonal matrix with (F2, F2, F3) along the diagonal
(remember F1 = F2). An important consequence of demagnetization is that the induced
magnetism can change significantly with orientation. For instance, with e = 4 we find
F2 = 2.1 and F3 = 12.7, so that the magnetization when the spheroid semi-major axis
is aligned with the field is approximately 6 times greater than when it is perpendicular.

Equation 4 returns M̂in in spheroid centered coordinates and assumes B̂o is also
spheroid centered. To use geographical coordinates we utilize the Euler rotation tensor

A =


 cosψ − sinψ 0

sin θ sinψ sin θ cosψ cos θ
cos θ sinψ cos θ cosψ − sin θ


 (5)

to rotate Bo to spheroid centered coordinates and then use its inverse AT to rotate M̂in

to geographical coordinates,

Min = µ−1
o ATFABo (6)

With this uniform magnetization, the magnetic field of the spheroid is given by the
expression

B =
1

4π

∫
S

1
r′

Min · dS (7)

where r′ is the distance from the source to the observation point (Figure 1). An exact
solution of this equation using prolate spheroidal harmonics is known (Stratton, 1941)
but we chose to use a multipole expansion; the details can be found in Appendix A and
McFee (1989). The first non-zero moment is the dipole m which is given by

m = VMin =
π

6
ea3Min (8)
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where V is the volume of the spheroid. The magnetic field from the dipole term is then

B =
µo

4πr3

(
3
r2

[x ·m]x− m
)

(9)

The octupole is the next non-zero moment and is a rank 3 tensor with 27 components.
Symmetry reduces the number of independent components to 6. The specification of
the octupole term is quite complicated, so we leave the details to Appendix A and just
note that its field dies off as r−5.

The rapid falloff of the octupole term with distance means that once the sensor
distance exceeds a few body lengths, the field is essentially dipolar. For example, Fig-
ure 2a plots the dipole and octupole fields from a spheroid model of a 105-mm ordnance
(a = 0.105 m, e = 3.7) orientated at 45o to the vertical, along horizontal lines at a height
of ae and 2ae above the ordnance. The responses are normalized by the maximum dipole
response at that height. At a height of ae the peak of the octupole term is a little over
15% of the peak of the dipole term. For the height 2ae the octupole peak is less than
5% the size of the dipole peak. Figure 2b shows how this ratio rapidly decreases with
increasing height above the ordnance.

Considering that real magnetic profiles are contaminated by noise, observing the
octupole response in the presence of the dipole response will generally be very difficult.
It may be possible when the sensor is very close to the ordnance, or when the noise
levels are low and the spatial positioning extremely accurate. We now examine the
consequence of the dipolar nature of the observed fields on both discrimination and
identification.

Discrimination using magnetometry

The induced dipole moment of a sphere is constrained to lie in the direction of the
applied field. On the other hand, the angle the induced dipole moment of a spheroid
makes with the Earth’s field will vary with its orientation. The angle ψ between the
induced moment and the applied field will be (see Appendix B)

ψ = arccos


 F2 sin2 θ + F3 cos2 θ√
F 2

2 sin2 θ + F 2
3 cos2 θ


 (10)

where θ is the angle of the spheroid semi-major axis with the Earth’s field and F2 and
F3 are the demagnetization factors of the spheroid. In Figure 3a we show the variation
in the angle ψ as the orientation θ changes for a spheroid with an aspect-ratio of 5. The
angle ψ achieves a maximum value that depends on the shape of the spheroid. For a
given aspect ratio, the spheroid orientation θ that results in the maximum value for ψ
is (see Appendix B)

θ = arctan

(√
F 3

3 + F3F 2
2 − 2F2F 2

3

F 3
2 + F2F

2
3 − 2F3F

2
2

)
(11)

The maximum angle for a given aspect ratio is then obtained by substituting Equa-
tion (11) into (10). The variation of this maximum angle with shape is shown in Fig-
ure 3b. Most UXO’s have eccentricities between 3 and 7, so that 55o is an upper bound
on the angle. This suggests a possible method for discrimination (Altshuler, 1996).

When an ordnance hits the ground but does not explode, the impact is usually suf-
ficient to cause shock demagnetization; the shock of impact causes magnetic domains
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Figure 2: (a) Dipole and octupole terms at one and two body lengths distance; (b) Log10

of the ratio of the octupole to dipole terms for a 105-mm projectile at 45o inclination

within the ordnance to become randomly aligned, thus erasing any remnant magnetiza-
tion. On the other hand, when the ordnance explodes, the shrapnel is heated, deformed
and cooled in the presence of the Earth’s field and can acquire permanent magnetism.
Putting all of the above together, it is conjectured that ordnance should not have a
dipole moment that exceeds an angle of 60o from the Earth’s field. The success of this
method of discrimination in reducing false alarms has been demonstrated in Nelson et
al. (1998). However, they did note that subsequent events (such as lightning strikes)
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Figure 3: (a) Change in the moment angle as the orientation varies for an aspect ratio
of 5; and (b) Maximum angle between the induced dipole moment of a spheroid and the
Earth’s field

can cause the ordnance to acquire a remnant magnetization and hence degrade the per-
formance of the discrimination method. Also, the assumption that ordnance are fully
demagnetized on impact may be violated in practice. We shall return to this point later,
but for now assume that the initial conjecture is valid.
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Figure 4: Magnitude of dipole moment (Am2) and angle from Earth’s field for 60, 76,
81, 105 and 155-mm projectiles

Ordnance identification using magnetometry

We now turn to the issue of identifying (or classifying) ordnance items from their dipole
field. For a given spheroid, the induced dipole moment will be dependent on the angle θ
that the spheroid axis makes with the Earth’s field. There is no azimuthal dependence
due to the spheroid’s symmetry. By varying the orientation θ we are able to trace the
change in dipole magnitude and angle with respect to the applied field. Figure 4 shows
these curves as polar plots for five different ordnance items; a 60-mm mortar, a 76-mm
projectile, an 81-mm mortar, a 105-mm projectile and a 155-mm projectile. Fitting
a dipole to observed data will produce a single point in this polar plot that needs to
be matched to an ordnance item. The curves for the 76-mm projectile and the 81-
mm mortar are very similar in certain parts of the plot, indicating that discriminating
between these items may be very difficult. Further, certain orientations lead to identical
dipole moments of both these items to the 60-mm mortar and the 105-mm projectile.

The analysis in the last paragraph indicates that there can be ambiguity in identi-
fication using magnetometry. This fact is rigorously established in Appendix C where
it is shown that for a given spheroid at a particular orientation, there are an infinite
number of other spheroids that could have produced the same dipole moment. For ex-
ample, Figure 5 and Table 1 show the family of spheroids that can produce the same
dipole moment as a 105-mm projectile orientated at 45o to the Earth’s field. The 90-mm
projectile lies very close to this curve emphasizing the difficulty in separating these two
items. The folding over of this curve to encompass spheroids of larger dimension is of
more concern to classification; the 155-mm lies quite close to this branch of the curve.
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There is also a family of oblate spheroids that could produce the same dipole moment;
as could objects of different shapes. This inherent ambiguity has a significant impact
on the methods we develop for ordnance classification in the remainder of this report.
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Figure 5: Spheroid dimensions that can produce the same dipole as a 105-mm shell at
45o inclination to the Earth’s field. The dimensions and orientation angles corresponding
to the labelled points are shown in Table 1.

Diameter (mm) Aspect ratio Angle (degrees)
A 82 5 40.5
B 138 5 84.0
C 138 2.82 57.2
D 327 0.06 53.4
E 327 0.31 33.4

Table 1: Spheroid dimensions, and their angles relative to the Earth’s field, that produce
the same dipole moment as a 105-mm projectile at 45o inclination.
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3 Inversion method for parameter estimation

The previous section demonstrated that, in many situations, it would be difficult to
recover more than the dipole component of a spheroid’s magnetic anomaly. Therefore,
rather than attempting a direct inversion for the spheroid location and dimension, we
apply a two-step procedure:

1. Invert for the best-fitting dipole moment and location;

2. Use the recovered dipole moment for discrimination and ordnance identification.

Due to possible difficulties in properly removing the regional and local geologically
derived fields from a magnetic survey, we also allow for a dc-shift in our dipole model;
this means that seven parameters are required to characterize each anomaly.

Inversion goal: Find the location x = (x, y, z), dipole moment m = (mx,my,mz)
and dc-shift d, that produces the best fit to a set of N total-field observations,
{dobs(xi), i = 1, . . . , N}.

We follow the usual convention in inverse problems and use m to specify the seven
model parameters (it should be clear from the context whether m refers to the model
parameters or the dipole moment). We formulate the inverse problem as a weighted,
least-squares optimization procedure where the goal is to solve

min
m∈�n

φ(m) (12)

The objective function is

φ(m) =
1
2

(F (m) − dobs)TW (F (m) − dobs) (13)

where F (m) is the forward model that produces the predicted data, dobs is the observed
data andW is the data-weighting matrix (ideally the data weighting matrix is the inverse
covariance matrix of the errors). We assume independent, gaussian errors, so that the
data-weighting matrix is diagonal with entries Wii = 1/σ2

i . The objective function may
then be rewritten as

φ(m) =
1
2

N∑
i=1

[
Fi(m) − dobs

i

σi

]2

=
1
2

N∑
i=1

ri(m)2 (14)

where ri(m) is the i-th normalized residual, and we are assuming that there are N
observations.
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Inversion method

We use the interior-reflective Newton method (Branch et al., 1999) to find the best
fitting model parameters. The algorithm is a trust region method which means that the
vector sk that updates the current model, i.e.,

mk+1 = mk + sk (15)

is chosen from a quadratic model of the objective function within a region where this
model can be trusted (hence the term trust region method). A quadratic approximation
to φ(m) is

φ(mk + sk) ≈ φ(mk) + ∇φ(mk)sk +
1
2
sT
k ∇2φ(mk)sk (16)

For a least squares problem we have

∇φ(m) = JT (m)r(m) (17)

where J is the Jacobian matrix which expresses the gradient of the residuals with respect
to each model parameter,

Jij(m) =
∂ri(m)
∂mj

(18)

and the Hessian matrix, H, is given by

H(m) = ∇2φ(m) = JT (m)J(m) +
N∑

i=1

ri(m)∇2ri(m) (19)

The Hessian can be difficult to calculate because it requires second-order derivatives.
In least-squares problems a Gauss-Newton approximation is often used, whereby the
second term in the above equation is ignored. This is a good approximation when the
residuals are small and means that the Hessian can be obtained essentially for free once
the Jacobian has been calculated.

The trust region method involves finding the s (we drop the subscripts denoting
iteration number and the dependence on m for clarity), that satisfies

min
{

1
2
sTJTJs + sTJT r

}
such that ‖Ds‖ ≤ ∆ (20)

where D is a diagonal scaling matrix and ∆ is a positive scalar that controls the trust-
region size. Without the trust region constraint the solution of the above equation can
be found from the normal equations

JTJs = −JT r (21)

The usual trust-region approach is the Levenburg-Marquart algorithm (Marquardt,
1963) where we solve

(JTJ + λI)s = −JT r (22)

The positive parameter λ ensures that the solution meets the constraint ‖Ds‖ ≤ ∆ and
also improves the condition number of the normal equations.
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Instead of minimizing Equation (20) over the full space, the algorithm we use min-
imizes over a two-dimensional subspace, span(s1, s2). The first basis of the subspace is
chosen as the steepest descent direction

s1 = −JT r (23)

and the second is obtained by applying preconditioned conjugate gradients (PCG) to
Equation (21). The PCG iterations are terminated when a negative curvature direction
is discovered, i.e.,

sT
2 J

TJs2 < 0 (24)

or until the residual is sufficiently small; this would be an approximate Gauss-Newton
step. The philosophy behind the method is to force global convergence (by the steep-
est descent or negative curvature) while still achieving rapid local convergence (by the
Gauss-Newton step).

Bounds on model parameters

The Interior-reflective Newton Method allows bounds to be placed on the model pa-
rameters by the user if they are required. We typically impose bounds on the spatial
location of the dipole, e.g.

−2 < x < 2, −2 < y < 2 and − 4 < z < 0 (25)

but do not bound the dipole moment or dc-shift. With lower and upper bounds of [li, ui],
the minimization problem of Equation (12) is changed to

min
m∈�n

{φ(m) : li ≤ mi ≤ ui} (26)

This constrained minimization problem can be solved using a modification of the for-
mulation presented above (Branch et al., 1999).

Starting model

Due to the possible presence of local minima it is important to obtain a good first guess
of the model parameters. To achieve this goal, we use the approach of McFee and Das
(1986), whereby the dipole parameters are analytically obtained from the z-component
of the vector field. Typically, the data available comprise the total-field and we first need
to estimate the z-component. Most anomalies from ordnance have peak amplitudes of
less than 1,000 nT, whereas the Earth’s field is on the order of 50,000 nT. The anomalous
total field ∆Bt is then approximately,

∆Bt 
 αx∆Bx + αy∆By + αz∆Bz (27)

where α = (αx, αy, αz) is a unit vector in the direction of the Earth’s field and ∆B =
(∆Bx,∆By,∆Bz) is the vector magnetic anomaly. Almost all of the continental USA
and Canada has inclinations exceeding 60o so that αz > 0.85 and to a first approximation

∆Bz 
 ∆Bt

αz
(28)

In regions where the z-component of the field is not so dominant, ∆Bz can be obtained
from ∆Bt using well known Fourier transformation techniques (Blakely, 1996).
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The McFee and Das (1986) technique involves first locating the maximum and min-
imum values of the field. Then

• The line joining these two points gives the azimuth of the dipole;

• The distance between the two points is related to the depth of the dipole;

• The locations of the extremum and their relative amplitude can be used to infer
the horizontal location (assumed to lie on the line joining the points);

• The relative amplitudes of the extremum are related to the dipole dip angle;

• The maximum anomaly amplitude is proportional to the dipole magnitude; and

• Comparing the fit of the dipole to the observed data, estimates the dc-shift.

For a nearly vertical dipole there is only a well defined maximum (or minimum).
In that case, the maximum gives the horizontal location, the half-width relates to the
depth and the maximum amplitude scales with the magnitude of the vertical dipole.

Data weighting matrix

For the least-squares data fitting, we weight each data-point dobs
i , with an estimate of

the standard deviation at that point, σi, through the data-weighting matrix,

Wii =
1
σ2

i

=
1

(ε+ γ|dobs
i |)2 (29)

The parameter γ is a percentage error that down-weights the influence of the large data
values; typically we chose 1% ≤ γ ≤ 5%. The parameter ε ensures that the denominator
in the above equation does not get too close to zero when dobs

i approaches zero; typically
we choose ε ∼ 1 nT.

Model parameter scaling

If different model parameters have significantly different scale lengths and typical values
(e.g. position ∼ 1 m; dipole moment ∼ 0.01 Am2), then small favorable changes in some
model parameters may be hidden by the large changes required in others. The ideal is to
have a non-dimensionalized model space, where unit changes in each model parameter
have about the same impact on the objective function. We therefore scale each model
parameter by dividing by the following values,

xtyp = (1, 1, 1)m, mtyp = (0.1, 0.1, 0.1)Am2 and dtyp = 5 nT (30)
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4 Application of the inversion method

Currently, the inversion algorithms are implemented in Matlab and comprise part of
a GUI driven toolbox for geophysical processing developed at The University of British
Columbia. Anomalies are first identified in a data-set using a combination of automatic
and manual interpretation. Then, the inversion algorithm is applied to a user specified
area about each anomaly (typically around 2 × 2 m2 to 3 × 3 m2). The algorithm is
terminated when the objective function decreases by less than a specified tolerance,
or when the gradient falls below a specified value. Both these parameters are user
controlled.

Summary reports can be generated, and the results visually inspected as demon-
strated in Figure 6. We will illustrate the performance of the inversion algorithm on a
large magnetics survey collected as part of an clearance project in the Helana Valley,
Montana.
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Figure 6: Example result of dipole moment inversion; the numbers in brackets are the
estimated standard deviations of the recovered parameters. Azimuth and Dip refer to
the orientation of the dipole in geographic coordinates, while Angle is measured between
the dipole moment and the Earth’s field.
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Figure 7: Some of the 81-mm mortars recovered at Guthrie Rd.

The Guthrie Road, Montana dataset

Once open fields, portions of the Helena Valley were used in the 1950s for military
training by Montana Army National Guard (MTARNG). The National Guard Bureau
funded the remediation project which was divided into two phases focusing on different
impact areas: Diamond Springs and Guthrie Road. We consider the data collected in
the Guthrie Road area in the summer of 1998. G-tek Australia, conducted a magne-
tometer survey of the area using an all-terrain vehicle towing an array of eight cesium
vapor magnetometers (Clark et al., 1999). The system was equipped with a real-time
global positioning system that allowed anomalies to be positioned to within about 20
centimeters.

G-tek found 840 anomalies that were tagged as potential UXO, and these were ex-
cavated in the summer of 1999. We analyze 822 of the anomalies (we couldn’t locate
the data for the remaining 18 anomalies). Table 2 partitions the dig-sheet identifica-
tions into six categories; 76-mm projectiles, 81-mm mortars, large pieces of ordnance,
shrapnel, metallic debris and geology (including anomalies where no metallic items were
found).

A selection of the 81-mm mortars recovered at Guthrie Rd are shown in Figure 7.
Most are intact and have not been substantially deformed by the force of impact. How-
ever, there are a number of deformed but intact items. These tend to have been practice
rounds that were deformed when the black spotter charge detonated on impact. There
are also a number of items that have been split into pieces, these were not classified as
UXO.

We fitted dipole moments using a percentage error of γ = 5% and a base error of
ε = 1 nT . The entire run of inversions took around 1

2 hour on a fairly standard desktop
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computer (Pentium Pro Processor with 800 MHz processor and 1 Gb RAM). We use
the correlation coefficient c between fitted and observed data to determine the goodness
of fit. We found that 85, or around 10% of anomalies had fits with c < 0.7 and 162, or
around 20% had c < 0.8. A break-down according to the dig-sheets of the failed fits is
given in Table 2. Most of the failed fits are from items identified as shrapnel, geology
or metallic debris, with only one ordnance item having a failed fit. We did not visually
inspect every failure, but those we did inspect generally had some type of data issue.
These included overlapping acquisition lines that we couldn’t remove without undue
effort; levelling problems between adjacent lines; and overlapping anomalies. In no case
did the inversion algorithm fail where the data quality was good. In the next sections
we will describe methods for discrimination and identification and apply them to this
data-set.

76-mm 81-mm Large pieces Shrapnel Metal Geology Total
All items 34 49 19 217 377 126 822
Failed fits 0 1 1 13 41 29 85

Table 2: Number of items found during excavation, and the number of fits with c < 0.7
(failed fits)
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5 UXO Discrimination

The last section described how dipole moments and position are fit to each anomaly.
If the data-fit is unsatisfactory the anomaly is marked as such and in a production clean-
up would be excavated as potential UXO. From the viewpoint of data interpreters, we
are unable to provide any reliable information on the target characteristics. On the
other hand, if the fit is satisfactory we attempt to use the recovered dipole moment
to discriminate UXO’s from non-UXO’s. For those items classified as potential UXO
the additional step of ordnance identification is attempted as described in the following
section.

Our method for ordnance discrimination is based on that described earlier in this
report, and is due to Nelson et al. (1998). Briefly, the method relies on the following
two factors;

1. Shock demagnetization causes the remnant magnetism of an ordnance to be vir-
tually eliminated;

2. The induced magnetization in a spheroid with e < 7 is constrained to lie within
about 60o of the Earth’s field (Figure 3).

With a recovered dipole moment of m, our discrimination routine is to calculate the
angle between it and the Earth’s field, Bo,

ψ = arccos(
m ·Bo

‖m‖‖Bo‖) (31)

We can never be certain that all remnant magnetization has been erased by the shock
of impact. Additionally, non-ordnance items, whether remnantly magnetized or not,
may have dipole angles close to the Earth’s field. Consequently, it is not possible to
make a definitive ordnance/non-ordnance distinction for all anomalies. Our preferred
discrimination method is to rank items according to the likelihood they are due to
ordnance. We do this on the basis of the angle ψ; the items with smaller ψ are ranked
higher up the list. In a clean-up operation one then excavates according to the list. If
resources are available to dig 50% of the anomalies then the first 50% of items in the
list are excavated. As a quality control measure a certain number of the lower ranked
items should also be excavated.

The Guthrie Road, Montana dataset

In Figure (8a) we plot the dipole magnitude and angle relative to the Earth’s field of all
the non-ordnance anomalies. Most of the dipoles lie within ±90o of the Earth’s field but
a large number have angles exceeding 60o. On the other hand, the dipole angles for the
ordnance and large ordnance fragments almost all lie within ±60o of the Earth’s field
Figure (8b). These results indicate that significant shock demagnetization has occurred
to the ordnance. There is only one significant outlier, with an angle of around 70o.

In Figure (9a) we give a normalized histogram of the angles for the different categories
of items. There is a clear concentration of ordnance with dipole angles close to the
Earth’s field (we include the significant sized ordnance fragments in this category).
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Figure 8: (a) Polar plot of dipole angle and magnitude (Am2) of non-ordnance items;
(b) Same for ordnance (cross) and significant ordnance fragments (dots).
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Figure 9: Breakdown of dig-sheets identifications and their (a) dipole angle relative to
the Earth’s magnetic field; and (b) dipole magntitude.

Shrapnel tends to have relatively low angles, but there are a significant number of items
with larger angles. There are two simple mechanisms that could explain this distribution:

1. Shock demagnetization sometimes occurs with shrapnel but not always;

2. Shrapnel acquires a remnant magnetization after impact, in the presence of the
Earth’s field.

Metallic debris and geological anomalies can have significant remnant magnetism,
with a definite peak in the distribution between 60o and 100o. We can think of no
plausible explanation for this peak in the distribution of dipole angles.
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Angle Dig Leave Ordnance found Ordnance missed False alarms
55 449 373 78 5 371
60 485 337 81 2 404
65 522 300 82 1 440
70 553 269 82 1 471
75 605 217 83 0 522

Table 3: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle only.

Angle Dig Leave Ordnance found Ordnance missed False alarms
55 449 373 91 11 358
60 485 337 99 3 386
65 522 300 101 1 421
70 553 269 101 1 452
75 605 217 102 0 503

Table 4: Guthrie Road discrimination results, including large pieces of ordnance items.
Discrimination used the dipole angle only.

The results of discrimination using different cut-off angles, for intact ordnance items
are summarized in Table 3, and for ordnance items and large fragments in Table 4. The
tables give the number of items to dig (including the 85 anomalies with poor fits), the
number left in the ground, the ordnance found, the ordnance left and the number of
false alarms. Figure (10) plots the proportion of items recovered versus the number of
holes that need to be excavated. Once the 85 anomalies with poor fits have been dug,
there is a high yield of ordnance as the number of holes increases. However, once about
80% of items have been recovered there is a noticeable slow-down in the ordnance yield;
a lot of holes need to be dug to recover the last few ordnance items. A total of 560
(68%) of holes are required to recover all ordnance items; this number also recovers all
the large ordnance pieces.

Many of the dipole fits for shrapnel and metallic debris have moments with low
magnitude (Figure 9b). None of the intact ordnance items has a dipole magnitude less
than 0.05 Am2. However, seven of the large ordnance fragments have dipole moments
less than this value. The results of rejecting items as non-ordnance based on the dipole
magnitude (as well as a cutoff angle of 75o) are summarized in Tables 5 (for ordnance
only) and 6 (for large fragments as well). With a dipole cutoff of 0.05 Am2 no intact
ordnance items are missed and we can leave 379 items in the ground (46% saving). If
we make the reasonable assumption (for this area) that the smallest item likely to be
found is a 60-mm mortar, the 0.05 Am2 cutoff is quite sensible; the minimum dipole
moment expected from a 60-mm mortar is around 0.055 Am2. Ranking items by their
magnitude results in a lower initial yield of ordnance (Figure 10) than ranking them by
angle. However, the magnitude ranking does not suffer as significant a slow-down in
yield, with a crossover occurring once about 80% of items have been recovered. A total
of 443 (54%) holes need to be excavated to recover all the ordnance.

One additional discrimination method is examined. It uses the idea of remnant
magnetism and requires information on the ordnance items likely to be found in the
area. For the Guthrie Rd data we assume that 60 and 81-mm mortars and 76, 90, 105
and 155-mm projectiles may be present in the area and we use the ordnance dimensions
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Figure 10: Yield of ordnance with number of holes dug for the three discrimination
methods. For all methods it is assumed the 85 anomalies with poor fits are excavated
first.

Mag. (A/m) Dig Leave Ordnance found Ordnance missed False alarms
0.06 383 439 81 2 302
0.05 443 379 83 0 360

Table 5: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle (75o) and magnitude.

listed in Table 7. The method is described in more detail in the next section. Briefly,
we determine the minimum percentage of remnant magnetization required to make the
recovered dipole moment match of the ordnance items. We then rank the items according
to the percentage of remnant magnetism, with lower percentages higher up the list. The
method does not apply to large ordnance fragments as these are not considered in our
modelling.

The results of discriminating by remnant magnetism are summarized in Table 8.
Note, that we also incorporate the angle constraint (< 75o) and the magnitude con-
straint (> 0.05 Am2). Allowing up to half of the dipole anomaly to be due to remnant
magnetization, we can identify all ordnance items and leave 420 anomalies in the ground
(51% saving). The ordnance versus number of holes curve for remnant magnetization
(Figure 10) reveals a high yield of ordnance with increasing number of excavations.
There is only a very slight slowdown in yield once about 95% of ordnance items have
been found. Once 402 (49%) of anomalies are excavated all ordnance items are recovered.
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Mag. (Am2) Dig Leave Ordnance found Ordnance missed False alarms
0.06 383 439 90 12 293
0.05 443 379 95 7 348
0.04 493 329 98 4 395
0.03 558 264 100 2 458
0.02 597 225 102 0 495

Table 6: Guthrie Road discrimination results, including large pieces of ordnance items.
Discrimination used the dipole angle (75o) and magnitude.

Item Diameter (mm) Aspect ratio
60-mm mortar 60 3.78
76-mm projectile 76 3.57
81-mm mortar 81 3.54
90-mm projectile 90 5.0
105-mm projectile 105 3.71
155-mm projectile 155 4.0

Table 7: Ordnance sizes used for the Guthrie Road identification results.

Remnant (%) Dig Leave Ordnance found Ordnance missed False alarms
10 228 594 46 37 182
20 306 516 71 12 235
30 350 472 79 4 271
40 384 438 82 1 302
50 415 407 83 0 332

Table 8: Guthrie Road discrimination results for intact ordnance items. Discrimination
used the dipole angle (75o), magnitude (< 0.05 Am2) and remnant magnetism.
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6 Ordnance identfication

Identification using the recovered dipole moment

For those anomalies classified as potential ordnance, the next step is to try to identify
the ordnance type. We established in Appendix B and an earlier part of the report that
a given dipole anomaly could have been produced by an infinite number of spheroids
(Figure 5). However, for any given site, there are only a finite number of ordnance
types that are likely to be found. This is the key observation that allows us to identify
ordnance type in the presence of ambiguity.

The dipole induced in a spheroid depends on the angle between the spheroids semi-
major axis and the Earth’s field. There is no azimuthal dependence due to symmetry.
As the ordnance is rotated about the Earth’s field the induced dipole moment will trace
out a curve such as that shown in Figure (4). This represents all dipole moments that
can be produced by the given ordnance item in the absence of remnant magnetism.
This mapping procedure can be repeated for all ordnance items suspected of occurring
in the area. With No ordnance items, a series of curves, {mk(θ), k = 1, . . . , No}, will
be generated. For a particular recovered dipole moment m, we calculate the minimum
distance between it and each of the dipole curves

∆mk = min
0≤θ<2π

‖m− mk(θ)‖ (32)

We assume that any discrepancy is due to remnant magnetism which, as a percentage
of the observed moment, will be

γk = 100
∆mk

‖m‖ (33)

This allows us to rank the ordnance items according to the likelihood they produced
the observed anomaly. The most likely item is that with the lowest percentage remnant
magnetism.

The success of the procedure will depend on;

1. The accuracy of the recovered dipole moment (see the error analysis section);

2. The orientation of the ordnance, because some orientations produce dipoles that
are close to dipoles potentially produced by other ordnance items;

3. How closely the spheroid approximation matches that for real ordnance; and

4. How much remnant magnetism the ordnance maintains after the shock of impact.

The Guthrie Road, Montana dataset

The dipole moments for those anomalies due to 76-mm projectiles are shown in Fig-
ure (11a) and for 81-mm mortars in Figure (11b). Misidentifications for both types of
ordnance appear likely due to the overlapping curves for the difference ordnance types.
In particular the moments for almost all the 76-mm projectiles are in a region where the
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Figure 11: Dipole moments of the Guthrie Road ordnance items for (a) 76-mm projec-
tiles; and (b) 81-mm mortars.

60, 76 and 81-mm calibre ordnances have similar dipole moments. For the 81-mm mor-
tars about half the moments are in a region with only the curve for the 81-mm nearby,
while the other half are in the more complex part of the plot. Our dipole identification
routine involves finding the ordnance curve that is closest to each recovered moment.
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Figure 12: Identification results for the Guthrie Road data using both the dipole and
dipole plus octupole methods for (a) 76-mm projectiles; and (b) 81-mm mortars.

Dipole identification results for 76-mm projectiles are given in (Figure 12a) and for
81-mm mortars in Figure (12b). In 19 out of 34 cases (56%) the 76-mm projectile is
identified correctly. The most common case of misidentification is as a 60-mm mor-
tar; from Figure (4) we see that this is due to overlapping moments between the 60
and 76-mm ordnances. For 81-mm mortars the identification routine is correct in 25
of 48 cases (52%), so that overall we achieve correct identifications 54% of the time.

23



Figure 13: One of the practice 81-mm mortars deformed due to the detonation of the
spotting charge.

The most common misidentification for the 81-mm mortar is as a 76-mm projectile (13
times). Some of the errors in misidentification could relate to the deformation of cer-
tain of the 81-mm practice mortars that occurred when the spotter charge detonated
(Figure 13). A spheroid is unlikely to give a very good approximation to this item. Un-
fortunately, while recovered ordnance items were retained after excavation no records
of the anomaly number were kept. Thus, we cannot determine which recovered dipole
moments correspond to deformed ordnance.

Assuming we are using the remnant magnetization method for discrimination and use
a cutoff of 50%, there will be 235 false alarms; items incorrectly identified as ordnance.
Applying the identification method to these false alarms (Figure 14a) is most likely to
cause a misidentification as a 60-mm mortar (the moments are generally quite low).
Metallic debris is more likely to give a false identification as a large ordnance item than
any of the other categories of items (shrapnel, large ordnance pieces and geology).

Seeded test site at The Former Fort Ord, California

The former Fort Ord is located near Monterey Bay in northwestern Monterey County,
California. Since 1917, portions of Fort Ord were used by Army units for maneuvers,
target ranges, and other purposes. Investigation and ordnance removal actions have
been conducted at the former Fort Ord since 1994 when the base closed. In November
1998, the United States Department of the Army instigated an Ordnance Detection and
Discrimination Study (ODDS) at Fort Ord (Asch and Staes, 2001).

The purpose of the Seeded Test was to evaluate the detection and discrimination
capabilities of selected geophysical instruments when ordnance items are buried or
”seeded” below the ground surface in a local site-specific geologic conditions. The seeded
test area consists of five separate, adjacent grids, which were cleared of anomalies to pro-
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Figure 14: Identification results for the Guthrie Road data for (a) dipole method; and
(b) dipole plus octupole method.

vide a controlled testing environment. Two grids are ”known” plots where the items,
depths and orientations of items are made known to all participants. It is these two
known sites (K1 and K2) that we analyze here.

Seventeen different types of ordnance items were buried in the seeded test plots.
Some ordnance scrap and other items were also seeded to allow evaluation of discrimi-
nation capabilities. Additional areas of the plots were excavated and back-filled without
any buried items.

For K1, 5 of the 7 ”empty hole” items (618, 619, 621 to 623) did not produce
acceptable fits, so they would not have been declared as potential ordnance. The other
two ”empty holes” had poorly fitting dipoles and would have been identified as scrap.
A fragment (595) and a signal illumination flare (612) also produced unacceptable fits.

Discrimination and identification results for the remaining items are summarized in
Table 9. Note, that the column marked Interp lists the first choice interpretation for
each item (e.g. scrap, 22 mm projectile, 60 mm ordnance etc). The column marked
Rank shows where the actual ordnance item was ranked. For instance, consider the
2.36” rockets. If the rank was 1 then the item was identified correctly as a 2.36” rocket
(e.g. anomaly 613). If the rank was greater than 1 (say 3), then the 2.36” rocket was
ranked as the third most likely cause of the anomaly (e.g. anomaly 602).

Two of the four fragments were correctly identified as non-ordnance (using a discrim-
ination cutoff of 60o). Six of the twelve 35-mm projectiles were incorrectly classified as
scrap; this may be due to remnant magnetism. Five of the remaining 35-mm projectiles
had the correct identification ranked as one of the top three choices. One of the 2.36”
rockets was classified as scrap, the other three had a 2.36” identification ranked in the
top three (one was correct). The six signal illumination flares could not be identified
correctly, neither could any of the grenades. Overall, the discrimination/identification
results for K1 are not very impressive. We believe part of the reason could be due to
remnant magnetism (the items were not shock demagnetized prior to emplacement). It
may also be a reflection of the generally poor performance of magnetics for small calibre
items (Klaff et al., 2002).
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Number Item za (m) zr (m) c Angle Interp Rank
620 Empty Hole 0.00 0.47 0.79 127.4 Scrap
617 Empty Hole 0.00 0.29 0.75 97.0 Scrap
599 Fragment 0.30 0.92 0.88 86.1 Scrap
598 Fragment 0.30 0.62 0.90 114.4 Scrap
597 Fragment 0.15 0.28 0.97 48.8 Signals
596 Fragment 0.30 0.41 0.91 55.2 22 mm
616 35-mm 0.61 0.56 0.93 74.0 Scrap
608 35-mm 0.46 0.23 0.85 59.0 22 mm 2
607 35-mm 0.30 0.23 0.82 150.1 Scrap
606 35mm 0.15 0.25 0.98 33.6 37-mm 6
605 35-mm 0.46 0.95 0.91 52.4 Signals 3
604 35-mm 0.61 1.50 0.81 65.3 Scrap
603 35-mm 0.15 0.37 0.90 55.2 22 mm 2
600 35-mm 0.30 0.43 0.86 68.8 Scrap
593 35-mm 0.61 0.53 0.92 38.0 22 mm 3
592 35-mm 0.30 0.44 0.97 87.1 Scrap
591 35-mm 0.61 0.34 0.95 105.6 Scrap
590 35-mm 0.46 0.38 0.96 37.5 60-mm mortar 2
613 2.36” rocket 0.61 0.65 0.96 57.1 Rocket 2 .36” 1
602 2.36” rocket 0.46 0.59 0.98 55.1 Signals 3
594 2.36” rocket 0.61 0.89 0.96 50.8 Rocket 3 .5” 4
586 2.36” rocket 0.61 2.79 0.96 118.2 Scrap
615 Signals 0.15 0.26 0.97 39.7 37-mm 2
614 Signals 0.30 0.61 0.82 82.6 Scrap
611 Signals 0.15 0.33 0.89 43.3 22 mm 3
589 Signals 0.30 1.08 0.89 20.1 22 mm 8
588 Signals 0.30 1.51 0.95 31.6 81-mm mortar 6
610 Hand grenade 0.15 0.08 0.93 49.9 22 mm 12
609 Hand grenade 0.30 0.58 0.77 38.6 22 mm 12
587 Hand grenade 0.30 0.88 0.99 121.5 Scrap
601 Rifle grenade 0.46 1.33 0.78 77.9 Scrap

Table 9: Fort Ord identification results for K1, where za is the actual burial depth, zr
is the recovered depth, c is the correlation coefficient between observed and predicted
data and angle is the angle between the Earth’s field and the recovered dipole moment.

For the K2 plot, good dipole fits could not be obtained for four items, 555, 556 (both,
25-mm projectiles at 46 cm), 569 (fragment at 30 cm) and 574 (signals at 30 cm). The
results for the rest of the items are summarized in Table 10. There were seventeen items
correctly identified as ordnance. Six of these were identified as the correct ordnance
type and five others had the correct ordnance listed in the top three possibilities. The
other six identifications were a long way off and we believe that several of these were
remnantly magnetized; in particular all the stokes mortars and the hand grenade.

Identification using the dipole and octupole

Magnetic anomalies from ordnance are usually dominated by the dipole component;
however, with high quality data we may be able to obtain useable information from
the octupole term. Due to the dipole dominance it would probably not be a good idea
to attempt a direct inversion for ordnance dimensions (local minima, non-uniqueness
etc). Rather, a better method is to obtain an optimum fit for each ordnance item in
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Number Item za (m) zr (m) c Angle Interp Rank
565 Fragment 0.15 0.14 0.93 92.1 Scrap
566 Fragment 0.30 0.34 0.98 113.5 Scrap
567 Fragment 0.15 0.14 0.95 52.3 22 mm
568 Fragment 0.30 0.28 0.89 37.3 37-mm
578 Fragment 0.15 0.22 0.92 32.5 60-mm mortar
579 Fragment 0.30 1.82 0.86 90.1 Scrap
581 Fragment 0.30 0.57 0.90 36.4 22 mm
580 25-mm 0.61 0.59 0.82 72.1 Scrap
553 35-mm 0.61 0.67 0.95 29.1 35-mm 1
559 35-mm 0.61 0.77 0.89 33.2 75-mm 8
575 35-mm 0.30 0.26 0.97 154.0 Scrap
563 37-mm 0.46 0.20 0.81 55.6 22 mm 3
583 37-mm 0.61 0.93 0.85 47.7 35-mm 5
584 37-mm 0.61 1.03 0.89 61.8 Scrap
554 2.36” rocket 0.61 0.89 0.97 21.6 90-mm 9
558 2.36” rocket 0.61 0.81 0.94 49.5 105-mm 3
564 75-mm 0.76 0.67 0.96 12.6 75-mm 1
572 75-mm 0.91 1.85 0.86 85.6 Scrap
560 Signals 0.30 0.50 0.81 124.4 Scrap
576 Signals 0.15 0.16 0.95 99.8 Scrap
573 3” Stokes 1.02 0.63 0.86 60.0 35-mm 10
577 3” Stokes 1.02 1.22 0.89 19.2 155-mm 2
585 3” Stokes 0.91 0.66 0.87 16.2 35-mm 9
561 81-mm 0.91 1.13 0.96 39.5 81-mm mortar 1
571 81-mm 0.91 0.85 0.94 34.8 90-mm 2
557 90-mm 0.76 0.82 0.97 21.3 90-mm 1
570 90-mm 0.76 0.73 0.97 20.2 90-mm 1
562 105-mm 1.22 1.16 0.94 59.7 Rocket 2.36” 3
582 105-mm 1.22 1.50 0.96 17.8 105-mm 1
552 Hand grenade 0.30 0.44 0.92 44.4 Signals 12

Table 10: Fort Ord identification results for K2, where za is the actual burial depth, zr
is the recovered depth, c is the correlation coefficient between observed and predicted
data and angle is the angle between the Earth’s field and the recovered dipole moment

our library, and declare the ordnance with the best fit as the most likely source of the
anomaly. For each item in the library this procedure involves determination of six model
parameters (x, y, z, θ, φ, d), where (x, y, z) is location, θ is the ordnance dip angle relative
to horizontal, φ is the azimuth angle relative to geographic North and d is the dc-shift.

We again use a least-squares formulation and the interior-reflective Newton method.
The data-weighting and parameter bounds are identical to that used for the dipole
inversion (i.e. we only bound the spatial location). For scale factors we use

xtyp = (1, 1, 1)m, (θtyp, φtyp) = (π/2, π/2) radians and dtyp = 5nT (34)

To determine the starting model, we first do a dipole inversion and go through the dipole
identification process. For each ordnance item, the identification process will return the
dip angle θ and azimuth φ that achieved the closest fit to the dipole. These can be
used as the starting orientation with the dipole location used as the starting location,
similarly for the dc-shift. Rather than doing an inversion for every item in the library
we only consider those 3-5 ordnance items with the best dipole fits.
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The Guthrie Road, Montana dataset

We only apply the dipole/octupole identification procedure to those anomalies flagged as
potential UXO by the remnant magnetization technique (with a cutoff of 50% remnant
magnetism). The quality of the fits obtained for the optimum ordnance were around
the same as the dipole fits; sometimes they were slightly worse and sometimes slightly
better.

Identification results for the dipole/octupole method for 76-mm projectiles are given
in Figure (12a) and for 81-mm mortars in Figure (12b). For 76-mm projectiles the
correct identification is achieved for 20 of 34 cases, one better than the dipole method.
However, for the 81-mm mortar correct identification is only achieved for 22 of 48 cases,
three less than the dipole method.

Misidentification results for false alarms are given in Figure (14b). The distribution
of items is very similar to that achieved with the dipole method.

We believe that there are three reasons why the dipole/octupole identification method
does not improve the original dipole identification method.

1. The octupole response is quite small and does not provide significant additional
constraints on the the geometry;

2. The equivalent spheroid is not an accurate enough approximation of an ordnance
item for the octupole contribution to have a positive effect; and

3. The ordnance items are slightly remnantly magnetized which changes the relation-
ship between ordnance orientation and the direction of magnetization.

Identification using the dipole and quadrupole

Thus far, the identification routines we have developed have relied solely on a spheroid
model of ordnance. However, this assumption is overly simplistic since most ordnance
items do not have that degree of symmetry. In particular, the front and tail ends of
ordnance tend to be different: the front is often tapered to provide better aerodynamics
and target penetration, while the tail end is often flat (the tails of mortars don’t matter
because they are usually made of aluminum). Therefore, a more realistic model of
ordnance is an axially symmetric body without front-back symmetry; such a body has
a multipole expansion with both a dipole term and a non-zero quadrupole term (recall
that the quadrupole was zero for a spheroid due to symmetry).

Our intent with this new identification method is to try to use the information in the
quadrupole to constrain the orientation of the body (φ, θ). As we discovered when using
the dipole method, the principal source of ambiguity in identification is our inability
to constrain the orientation of the body. In particular, when the object’s dimension is
changed, one can compensate by changing the object orientation and produce the same
or a very similar dipole moment. If we could constrain the orientation then we could
better constrain the ordnance dimension.

The basis of the idea is that there will be no quadrupole contributions perpendicular
to the axis of symmetry but there will be contributions along the symmetry axis. We
therefore construct a model with these characteristics and use an inversion procedure
to recover a model with the best orientation. Concomitant with this process we also
recover parameters that depend on the shape of the body, as we now explain.
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The dipole moment of an axially symmetric body can be written in the form,

m = µ−1
o ATFABo (35)

where A is the usual Euler rotation tensor and F is a 3 × 3 diagonal matrix with
(F2, F2, F3) along the diagonal. We are assuming axial-symmetry so that F1 = F2.
The demagnetization factors, Fi, given in the above equation, are V Fi times those
previously given in Equation 2, where V is the volume of the body. These volume
modified demagnetization factors contain all the information on the body’s dimensions
that we are attempting to recover.

We are assuming the body is axially symmetric (about the z-axis), therefore the
quadrupole tensor components in the x-y plane are zero (see Appendix A for a deriva-
tion). The body is asymmetric about the x-y plane so that the quadrupole tensor has
non-zero components in the z-direction. The tensor is symmetric M̂q = M̂

T
q and is

therefore defined by the equation,

M̂q =


 0 0 mq1

0 0 mq2

mq1 mq2 mq3


 (36)

where mq1, mq2 and mq3 are dependent on the shape and magnetization of the body.
The above equation is in body-centered coordinates. The quadrupole tensor may be
rotated into the Earth’s frame of reference using the following equation,

Mq = AM̂qAT (37)

The magnetic field due to this quadrupole tensor can be calculated using Equation (A-
11). Ignoring the octupole and any higher order moments, full specification of an axially-
symmetric body therefore involves the following 11 parameters

[x, y, z, φ, θ, F2, F3,mq1,mq2,mq3, d] (38)

where we have again allowed a dc-shift, d.
To invert for the 11 parameter model we use the same least-squares formulation and

Interior-reflective Newton method described previously. The parameter scalings are the
same as those given in Equation (34), with the additional parameters scaled as

Ftyp = (0.01, 0.01)m3 and mqtyp = (0.01, .01, .01)Am3 (39)

Once the model parameters have been recovered we return to our spheroid model of
ordnance and find the object dimensions that reproduce the recovered volume demag-
netization factors, F2 and F3. This is straightforward because the aspect ratio, e solely
determines the ratio F2/F3, while the diameter and aspect ratio together determine the
magnitudes of F2 and F3. On occasion we find that F2 converges towards zero while F3

appears to converge to a sensible value. In that case, we fix the aspect ratio at a typical
value 3 < e < 5 and just solve for the diameter.

The Guthrie Road, Montana dataset

We applied the quadrupole inversion method to all 737 anomalies at Guthrie Rd that
had good dipole fits. Perhaps self-evidently the fits and correlation coefficients for
the dipole/quadrupole model were better than for the dipole model alone. Figure 15
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Figure 15: Quadrupole identification results at Guthrie Road; (a) Recovered aspect-
ratios and diameters; and (b) Histogram of recovered diameters.

summarizes the results of the quadrupole identification. There appears to be some
identification ability but there are a significant number of ordnance items where the
recovered dimensions are inaccurate. In particular, there is a tendency to either recover
too low an aspect ratio and hence too large a diameter or vice-versa.

There are two conclusions that can be drawn from the quadrupole discrimination
results. Firstly, the quadrupole may be unable to provide the required constraints on
the ordnance orientation. Alternatively, there may be enough remnant magnetization
in the body so that our model is not an accurate reflection of reality.

With these issues in mind we trialed one last method for identification using the
quadrupole. This time we allow the dipole moment to vary independently of the
quadrupole; i.e. in place of F1 and F2 in Equation (38) we solve for m = (m1,m2,m3).
Thus there are twelve parameters to find. Our intent is to determine if unmodelled
quadrupole components bias the estimation of the dipole moment.

We applied the method to the Guthrie Road data and then used the recovered dipole
moment to achieve ordnance identification in the usual way. We found that the method
was slightly inferior to the original dipole identification routine. In particular for the
81-mm mortar 23 of the 48 anomalies were identified correctly (compared to 25 of 48),
while for the 76-mm projectile only 16 of 34 cases were correct (compared to 20 of 34).
Thus, we conclude that unmodelled quadrupole components do not negatively affect our
ability to identify using the dipole moment.
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7 Error Analysis

The dipole identification results for Guthrie Road indicate that around 55% of the
time we correctly identify the ordnance type. The 45% misidentifications must be due
to either an incorrect model, remnant magnetism or uncertainty in the recovered dipole
moments. In this section we analyze the uncertainty in recovered dipole moment using
linearized error analysis.

Estimating the covariance matrix of the model parameters

To derive the covariance matrix of the model parameters we follow the development
given in Bard (1974). At the minimum of the objective function the gradient is zero

∇φ(m,d) = 0 (40)

where ∇ is with respect to the model parameters. If we change the data to d + δd we
will change the objective function and hence the position of the minimum will vary to
m + δm. The gradient of the new objective function at the new minimum will be zero.

∇φ(m + δm,d + δd) = 0 (41)

If we expand this gradient in a Taylor series and only keep first order terms we find

∇φ(m + δm,d + δd) = ∇φ(m,d) + ∇2φ(m,d)δm +
∂

∂d
∇φ(m,d)δd = 0 (42)

Recognizing that the ∇2 term is the Hessian and rearranging we find

δm = H−1 ∂

∂d
∇φ(m,d)δd (43)

The covariance matrix of the model parameters is

Vm = E[δmδmT ] (44)

where E[·] is the expectation operator. Substituting Equation (43) into (44), recognizing
that the Hessian and gradient terms are constants (under expectation) and rearranging
terms we find

Vm = H−1 ∂

∂d
∇φ(m,d)T E[δdδdT ]

∂

∂d
∇φ(m,d)H−1 (45)

The covariance matrix of the data is Vd = E[δdδdT ]. Assuming the data-weighting
matrix in our formulation of the inverse problem is the same as the inverse covariance
matrix of the data, the Gauss-Newton approximation to the Hessian is

H = JTV−1
d J (46)

while

∂

∂d
∇φ(m,d) = V−1

d J (47)
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Substitution of Equations (46) and (47) into Equation(45) and simplification reveals
that the covariance matrix is the inverse of the Gauss-Newton approximation to the
Hessian,

Vm = (JTV−1
d J)−1 = H−1 (48)

The above equation can be used to estimate uncertainties in each of the model param-
eters and can also be used to define confidence ellipses of multiple parameters. The
uncertainties obtained through this equation are linearized estimates of the true un-
certainties. Before considering them further we investigate how closely these linearized
estimates would match fully non-linear estimates. If the minimum of the objective
function is m̂ then linearized estimates are equivalent to approximating the objective
function with

φ(m) − φ(m̂) ≈ 1
2

(m − m̂)TH(m − m̂) (49)

If the above equation is a good approximation to the objective function about the
minimum then the linearized uncertainties will be accurate estimates of the true uncer-
tainties. We have compared the objective functions of many anomalies and usually find
a situation such as that illustrated in Figure (16). The linear and non-linear estimates
are very similar for parameters related to the dipole moment, and less so for parameters
related to location (especially the depth). From the perspective of ordnance identifica-
tion it is the uncertainties in the dipole moment that are important, so we can conclude
that the linearized estimates should be accurate for our purposes. We note in passing
that including the second order terms in the Hessian has very little impact on the accu-
racy of the linear approximation, even if the residuals at the solution are large. This is
readily apparent for the dipole components in cartesian coordinates m = (mx,my,mz)
because the second derivatives with respect to these parameters are zero (Equation 9).

Confidence ellipses of multiple parameters

We are principally interested in the joint-uncertainty in the dipole magnitude and an-
gle relative to the Earth’s field because these two parameters control our decisions on
discrimination and identification. A good method for visualizing the joint-uncertainties
is to calculate confidence ellipses; these are contours of equal confidence in the model
parameters. They are usually defined to encompass a certain probability that the model
lies within the defined region. For instance, a one-sigma (or 68.3%) confidence ellipse
would delineate a region that has a 68.3% chance of containing the true model parame-
ters (under the particular statistical assumptions used to define the objective function).

To define the confidence ellipse for r parameters requires that the uncertainties in
the other n − r parameters (assuming there are n parameters in total) are projected
onto the r-dimensional hyperplane under consideration. In turns out (Bard, 1974) that
this projection can be implicitly achieved by calculating the covariance matrix through
inversion of the appropriate r × r subsection of the Hessian matrix. For example, if we
are interested in the joint confidence ellipse for parameters 2 and 5 we would calculate

Vm =

[
H22 H25

H52 H55

]−1

(50)

The principal axes of the ellipse are then obtained by eigenvalue decomposition of Vm,
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Figure 16: Objective function (solid line) and Gauss-Newton approximation to the Hes-
sian (dashed line) about the inversion solution for Target 575, Fort Ord.

Vm = USUT (51)

where S is a diagonal matrix of eigenvalues and U is an orthonormal matrix of eigen-
vectors; each eigenvector is a principal axis of the ellipse. The size of each principal axis
is given by the reciprocal of the corresponding eigenvalue.

The final step is to find the ellipse that lies on the boundary of a specified confidence
region (e.g. 68.3% or the one-sigma error). If the sampling distribution is normal, unbi-
ased and we assume that the covariance matrix Vm is known, then (m−m̂)TV−1

m (m−m̂)
is χ2 distributed with r degrees of freedom (Bard, 1974). The boundary of the ellipse
corresponding to a particular confidence level is found by calculating the value of the χ2

distribution with r degrees of freedom that corresponds to that confidence. For example,
with 2 degrees of freedom, the 68.3% confidence limit has χ2 = 2.298. The contour of
(m− m̂)TV−1

m (m− m̂) with the value 2.298 corresponds to the boundary of the 68.3%
confidence region.

Alternatively, if the covariance matrix is not known and we assume that all observa-
tions are independent (so that Vd = σ2I) then the confidence level is obtained through
the Fr,n−r distribution (Bard, 1974). In that case the value of χ2 calculated above would
be replaced with

rσ2Fr,n−r(γ) (52)
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where γ is the desired confidence limit (γ = 0.683 for the 68.3% confidence level) and σ2

is the sample variance. If the optimum model returned by the minimization routine is m̂
and there are K model parameters then the sample variance is obtained by calculating

σ2 =
1

N −K
N∑

i=1

[
Fi(m̂) − dobs

i

]2
(53)

Finally, if the assumption of Gaussian statistics does not hold, conservative confidence
limits can be calculated by recourse to the Bienaymê-Chebyshev inequality (Bard, 1974).
For the γ confidence limit this replaces the value of χ2 above with

r

1 − γ (54)

The Guthrie Road, Montana dataset

The distribution of residuals for the 660 anomalies at Guthrie Road with correlation
coefficients greater than 0.8 are shown in Figure (17). The curves have been normalized
so that they have an integral of one; thus we are approximating the posterior probability
density function (posterior PDF) of the residuals. The best fitting Gaussian distribution
(with σ = 0.99 nT) provides a poor fit to the residuals. In particular, large residuals are
much more likely than predicted by a normal distribution. In Figure (17) we also show
the best fitting Ekblom distribution (Ekblom, 1973) which has a probability density
function equal to

Pr(x) = c exp

[
(x2 + ε2)p/2

σp

]
(55)

where c is a constant that ensures the PDF integrates to unity. This is a perturbed
version of an Lp-norm and we found best fitting values of σ = 1.16 × 10−4 nT, ε =
0.609 nT and p = 0.224. The correspondence between the observed distribution of
residuals and the Ekblom PDF is excellent. We will consider the good fit of the Ekblom
PDF further in the discussion section of this report.

As the residuals are clearly non-Gaussian, we must be cautious when interpreting
confidence ellipses calculated under the normality assumption. The shape and relative
size of the ellipses are likely to be correct but their absolute values are probably incorrect
(i.e. the 68.3% confidence ellipse won’t correspond to a confidence of 68.3%). However,
the absolute confidence ellipses should provide a rough estimate of the uncertainties
in the parameters. They should also provide a reliable means of comparison of the
uncertainties in recovered parameters for different anomalies.

We calculated confidence ellipses for the dipole magnitude and angle relative to the
Earth’s field, for the anomalies due to 76-mm projectiles and 81-mm mortars at Guthrie
Road (Figure 18). The data-weighting matrix was the identity matrix, with a sample
standard deviation calculated from the residuals by Equation (53). The figures show
the one-sigma (68.3%) and two-sigma (95.4%) confidence ellipses about each recovered
dipole moment (assuming Gaussian statistics). For the 76-mm projectiles all except one
anomaly have very small uncertainties. The one outlier was incorrectly identified as a
105-mm projectile. For the 81-mm mortars all anomalies have very small uncertainties.
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Figure 17: Distribution of residuals for the 660 anomalies at Guthrie Rd with correlation
coefficient greater than 0.8.

We also calculated confidence ellipses using the very conservative Bienaymê-Chebyshev
inequality (Figure 19). The confidence ellipses are significantly larger than those re-
turned under the normal assumption. If the real confidence ellipses were this large, then
uncertainty in the recovered moment would be a contributing factor in misidentifications
(especially for 76-mm projectiles). However, the real confidence ellipses would have a
size intermediate between the Gaussian and Bienaymê-Chebyshev estimates. This would
imply that misidentification is sometimes, though probably not that often, caused by
uncertainty in the recovered moment. Misidentifications are more likely to occur due to
modelling deficiencies and/or remnant magnetization.

We also calculated confidence ellipses (under the normal assumption) for the anoma-
lies due to metallic debris and geology (Figure 20). For the metallic debris many of the
uncertainties are quite low but there are a few items with much higher uncertainties.
For the anomalies due to geology the uncertainties are generally much higher. In many
cases the recovered angle is around 60o but the uncertainty is high. This is a critical area
for making discrimination decisions so we can conclude that, for geological anomalies,
uncertainty in dipole angle can have a significant impact on discrimination.
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Figure 18: One sigma (68.3%) and two sigma (95.4%) confidence ellipses, assuming
Gaussian statistics, about the recovered dipole moments for (a) 76-mm projectiles; and
(b) 81-mm mortars.
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Figure 19: Worst case scenario for one sigma (68.3%) and two sigma (95.4%) confidence
ellipses about the recovered dipole moments for (a) 76-mm projectiles; and (b) 81-mm
mortars.
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Figure 20: One sigma (68.3%) and two sigma (95.4%) confidence ellipses about the
recovered dipole moments for (a) metallic debris; and (b) geological anomalies.
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8 Discussion

In this report we have described a successful inversion method for recovering the
position and dipole moment from a total-field magnetic anomaly. The inversion uses
a least-squares formulation and an interior-reflective Newton method to minimize the
objective function. A starting model is defined using an analytical method based on
approximating the vertical component of the magnetic field. The inversion method is
very fast and reliable; our Matlab implementation requires only a few seconds to recover
the parameters for each anomaly.

The recovered dipole moments can be used to make discrimination decisions by
recourse to the phenomena of shock demagnetization. Complete shock demagnetization
may not occur for all ordnance items all the time. Additionally, non-ordnance, even
though they may be remnantly magnetized, might be orientated so that their dipole
moments lie close to the Earth’s field. This means that it is not possible to make a
definitive ordnance/non-ordnance decision. Rather, we prefer to rank anomalies, with
items most likely to be UXO higher up the list. We investigated three such ranking
procedures; (i) dipole angle, (ii) dipole angle and magnitude and (iii) percentage of
remnant magnetism, and found that the remnant magnetization ranking was the best.
With this method all ordnance would have been recovered after only half of the anomalies
had been excavated. This included 85 anomalies with poor dipole fits that only yielded
one UXO. The criterion used to select potential UXO may need to be revised to minimize
the number of anomalies where we are unable to make reliable inferences about the
bodies origin.

Linearized error analysis indicates that the angle between the recovered dipole mo-
ment and the Earth’s field for ordnance items is relatively well constrained. Therefore,
uncertainty in the recovered dipole moment is unlikely to strongly influence the dis-
crimination ranking. For items identified as geology, the confidence ellipses were much
larger. Consequently, the position of these items in the ranking is strongly influenced
by uncertainty.

The discrimination method was very successful at Guthrie Road but could not be
reliably applied to the seeded sites at Fort Ord. This is a consequence of remnant mag-
netization and emphasizes the importance of shock demagnetization to the viability of
the method. Additional work needs to be undertaken to determine the circumstances
where shock demagnetization occurs. For instance, the recovered dipole moments of
several of the 81-mm mortars at Guthrie Road had relatively large dipole angles, in-
dicating the presence of some remnant magnetism. Perhaps the lower impact velocity
of mortars compared to artillery projectiles causes only partial shock demagnetization;
this needs to be investigated further.

Identification of the ordnance type using the recovered dipole moment is difficult due
to non-uniqueness. The dipole moment is the product of volume with the magnetization
vector. When the volume changes, self-demagnetization as the orientation of the body
is varied can change the magnetization vector and thus produce an identical or similar
dipole moment. However, recognizing that there are only a finite number of ordnance
types in an given area, makes identification using the recovered dipole moment feasible.
At Guthrie Road correct identification could be achieved about 55% of the time.

One of the key factors that influences successful identification is obtaining the correct
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trajectory of moment magnitude and angle for a given ordnance item. We use a spheroid
approximation to calculate this trajectory. Modelling of shapes that more closely ap-
proximate real ordnance should be undertaken in order to determine the reliability of
the spheroid approximation.

A significant cause of misidentification is the inability of the dipole moment to con-
strain the orientation of the causative body. In an attempt to overcome this problem we
developed inversion routines that recover information on the quadrupole and octupole
components of the body. The dipole/octupole method we developed uses a spheroid
approximation of ordnance to estimate both the dipole and octupole moments. No sig-
nificant improvement in identification over the dipole method was found. This could
be due to one or more of the following: (i) remnant magnetization; (ii) rapid falloff of
the octupole component with distance so that it is unable to constrain the orientation;
and (iii) the spheroid provides a poor approximation to the octupole moment of real
ordnance.

The quadrupole method relaxed the requirement of top-bottom symmetry enforced
by a spheroid approximation and attempted to recover the dipole and quadrupole mo-
ments of an arbitrary axially symmetric body. The fits to the data were improved
slightly but no advantages for identification were realized. The cause is likely due to one
or more of the following: (i) remnant magnetization; (ii) the inability of the quadrupole
component to constrain the orientation; and (iii) inadequacy of the model.

The failure of the quadrupole and octupole methods to improve identification may
imply that analysis of magnetic data alone does not provide enough information to
constrain the objects orientation. One possible method to provide this constraint is by
joint inversion of magnetic and electromagnetic data; either single or multiple channel
time domain EM or frequency domain EM. Most EM sensors illuminate the target from
multiple directions and are consequently more sensitive to orientation (in contrast the
direction of the Earth’s field is fixed). In return, the magnetics may provide valuable
depth constraints that are difficult to obtain with EM alone (Pasion and Oldenburg,
2001).

Linearized error analysis was used to estimate individual parameter uncertainties and
joint confidence ellipses. The linear approximation provides an accurate model of the
objective function about the minimum. However, the residuals do not follow a Gaussian
distribution so that reliable confidence ellipses could not be defined. Additionally, the
upper bound provided by the Bienaymê-Chebyshev inequality is very conservative and
probably returns confidence ellipses that are much larger than required. A recommen-
dation for future work is to attempt to calculate confidence ellipses using non-Gaussian
statistics.

The residuals were found to follow an Ekblom distribution, yet we minimized a
measure derived from Gaussian statistics. A reformulation of the problem using an
Ekblom distribution as a measure of data misfit is therefore recommended. The resulting
objective function would need to be solved by a different optimization algorithm than
the one used here. Algorithms for the solution of this optimization problem are well
known and include iteratively reweighted least squares and Newton’s method (Watson,
1980; Ekblom, 1987). Implementation of the new optimization method would enable a
thorough investigation to be made on the influence the choice of the measure of data
misfit has on the recovered model. This is an issue often glossed over when solving
inverse problems and this report was no exception.
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9 Conclusions and Recommendations

A dipole inversion method was developed and successfully applied to the discrim-
ination and identification of magnetic anomalies at Guthrie Road Montana. The dis-
crimination method had the potential to reduce the number of excavations by half, yet
still yielded all the ordnance. Identification of the causes of the anomalies is difficult
using the recovered dipole moment due to non-uniqueness. However, by recognizing that
there are a finite number of ordnance types, correct identification could be achieved in
about 55% of cases. Extension of the inversion method to recover either quadrupole of
octupole moments did not improve our ability to discriminate or identify.

We recommend the following areas as directions for future research.

1. Shock demagnetization: The extent to which this phenomena occurs should be
investigated further because shock demagnetization is central to the success of
discrimination using magnetic data.

2. Magnetic modelling of ordnance: The trajectory of the modelled dipole moment
magnitude and angle determines our identification decisions. Therefore, the agree-
ment between the moments returned by a spheroid approximation and a more
realistic ordnance shape should be investigated further.

3. Joint inversion of magnetics and electromagnetics: Identification difficulties in
magnetics are caused by an inability to constrain the orientation of the causative
body. The ability of time or frequency domain electromagnetics to constrain the
orientation needs to be investigated. Conversely, magnetics may provide valuable
depth information that can be exploited by the EM inversion.

4. Error analysis using non-Gaussian statistics: The residuals do not follow a Gaus-
sian distribution so uncertainty estimates based on a more realistic statistical
distribution should be investigated.

5. Robust measures of data misfit: The problem should be reformulated using a more
realistic measure of data misfit (the Ekblom norm), and methods implemented to
solve the modified inversion problem.
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Appendix A: Multipole Expansion

In this appendix we give a brief derivation of the multipole expansion of a magnetic
body, and in particular derive the equations relevant to a spheroid. Our derivations
closely follow those given in McFee (1989).

The scalar potential, φ(r) of a body with magnetization M is given by

φ(r) =
1

4π

∫
V

M · ∇(
1
r′

)dV (A-1)

where r′ is the distance from the source to the observation point (Figure 1). Expanding
the gradient and using the divergence theorem we find

φ(r) =
1

4π

(∫
S

1
r′

M · dS −
∫

V

1
r′
∇ · MdV

)
(A-2)

If the induced field inside the body is uniform and parallel (which it is for a spheroid),
which eliminates the second term in the above equation because then ∇ · M = 0. The
multipole method proceeds by expanding 1

r′ as a Taylor series about the origin,

φ(r) =
1

4πr

∫
S
M · dS +

[
∂

∂xi

1
4πr

] ∫
s
xiM · dS +[

∂2

∂xi∂xj

1
4πr

]
1
2!

∫
S
xixjM · dS +

[
∂3

∂xi∂xj∂xk

1
4πr

]
1
3!

∫
S
xixjxkM · dS + ...) (A-3)

where repeated indices imply that summation convention is to be used. The scalar
potential from a 2n pole with moment m(n)

ij... is given by the expression

φ(2n) =
m

(n)
ij...

4πn!
∂n

∂xi∂xj . . .

[
1
r

]
(A-4)

from which it follows that the first four moments are

m(0) =
∫

S
M · dS (A-5)

m
(1)
i =

∫
S
xiM · dS (A-6)

m
(2)
ij =

∫
S
xixjM · dS (A-7)

m
(3)
ijk =

∫
S
xixjxkM · dS (A-8)

In order the moments are the scalar monopole m(0), the vector dipole m(1), the rank 2
tensor quadrupole m(2), and the rank 3 tensor octupole m(3). Magnetic monopoles do
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not exist which means that the monopole term is zero. Expansion of the dipole term
reveals that the dipole moment is the product of the magnetization with the volume,

m(1) = MV (A-9)

Due to the symmetry of the spheroid the quadrupole term is zero. After the dipole, the
next non-zero term is the octupole; specification of the octupole components is tedious
so we refer the interested reader to McFee (1989).

The magnetic field (in the i-th direction) due to the dipole component is given by
the expression

B
(1)
i =

µo

4πr3

(
3
r2

[x ·m(1)]xi −mi

)
(A-10)

Although zero for the spheroid we will use the quadrupole term later, its field is,

B
(2)
i =

3µo

8πr5
(
−xim

(2)
jj − xj(m

(2)
ij +m(2)

ji ) + 5r−2xixjxkm
(2)
jk

)
(A-11)

and for the octupole the field is,

B
(3)
i =

µo

8πr5
(
3m(3)

ijj − 15r−2
[
xixjm

(3)
jkk + xjxkm

(3)
ijk

]
+ 35r−4xixjxkxlm

(3)
jkl

)
(A-12)

It remains to find the magnetization vector for a spheriod. A solution of the boundary
value problem (Stratton, 1941) shows that the demagnetization factors are

Fi =
µr − 1

1 + αi(µr − 1)/2
(A-13)

where µr is the relative permeability (µ = µrµo),

α1 = α2 =
e(e+ E)
e2 − 1

(A-14)

and

α3 =
−2e(e−1 + E)

e2 − 1
(A-15)

with

E =
log(e−√

e2 − 1)√
e2 − 1

(A-16)

for a prolate spheroid (e > 1) and

E =
arctan( e√

1−e2
) − π/2

√
1 − e2 (A-17)

for an oblate spheroid (e < 1). For the special case of a sphere (e = 1) then

α1 = α2 = α3 =
2
3

(A-18)
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The demagnetization factors together with the Earth’s field Bo (in spheroid centered
coordinates), determine the strength of the induced magnetization,

M = µ−1
o FBo (A-19)

where we have written F as a 3× 3 diagonal matrix with (F2, F2, F3) along the diagonal
(because F1 = F2).

Multipole expansion for an axi-symmetric body

In going from the general equation (A-2) for a magnetized body to that for a spheroid,
we used the fact that the magnetization inside the body was constant so that ∇·M = 0.
For a general axi-symmetric body this is no longer true and there is an extra contribution
to each of the moments. For the dipole,

m
(1)
i =

∫
S
xiM · dS−

∫
V
xi∇ · MdV (A-20)

and using the identity∫
V
φM · ∇φdV =

∫
S
φM · dS −

∫
V
φ∇ ·MdV, (A-21)

we find

m
(1)
i =

∫
V

M · ∇xidV

=
∫

V
MidV (A-22)

Thus the dipole moment is just the integration of the magnetization over the volume
of the body. Most ordnance items are either cylinder like with a pointed front (e.g.
most artillery projectiles) or close to a spheroid shape (e.g. mortars, the fins can be
ignored as they are usually aluminum). For an infinite cylinder the field lines are con-
stant within the body. Therefore, for a projectile any changes in magnetization will be
concentrated at the ends of the body, and will generally make only a small contribution
to the multipole moments. For a mortar, the shape is close to second order (Stratton,
1941) and hence the magnetization direction will be approximately constant. Thus,
changes in magnetization direction should not make a significant contribution to the
observed magnetic anomaly.

Using an analogous development to the dipole, the quadrupole moment can be shown
to be equal to

m
(2)
ij =

∫
V

M · ∇(xixj)dV

=
∫

V
(Mixj +Mjxi)dV (A-23)

Assuming that changes in magnetization can be ignored implies that

m
(2)
ij = Mi

∫
L
dx3

∫
S(x3)

xjdS +Mj

∫
L
dx3

∫
S(x3)

xidS (A-24)
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where L is the length of the body parallel to the symmetry axis, z = x3 and S(x3) is a
slice of the body perpendicular to the axis of symmetry. Due to symmetry each of the
integrals over S(x3) are zero for i or j = 1 or 2, from which it follows that

m
(2)
ij = 0 for any i, j = 1 or 2 (A-25)

The quadrupole moment is symmetric m(2)
ij = m(2)

ji so that the full moment tensor can
then be written as (where we have dropped the (2) subscript),

M =


 0 0 m13

0 0 m23

m13 m23 m33


 (A-26)
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Appendix B: Constraints on Dipole Orientation

The angle the induced dipole moment in a spheroid makes with the Earth’s field
cannot exceed a certain value. In this appendix we derive the equations which specify
this upper bound. We assume the Earth’s field is at an angle θ to the spheroid symmetry
axis and align the z-axis of our coordinate system with the symmetry axis. We can then
choose the x-axis so that it is perpendicular to the Earth’s field. In this coordinate
system

bo = bo(0, sin θ, cos θ)T (B-1)

The spheroid diameter a and aspect ratio e determine the demagnetization factors, F2

and F3, so that the induced dipole moment m is,

m = V bo(0, F2 sin θ, F3 cos θ)T (B-2)

where V is the volume of the spheroid. The angle ψ between the Earth’s field and the
dipole moment is

cosψ =
bo · m

‖bo‖‖m‖ (B-3)

which, on substitution of Equations (B-1) and (B-2), becomes

cosψ =
F2 sin2 θ + F3 cos2 θ√
F 2

2 sin2 θ + F 2
3 cos2 θ

(B-4)

After differentiating this equation by θ, setting the result to zero and extensive
algebraic manipulation we find

θ = arctan

(√
F 3

3 + F3F 2
2 − 2F2F 2

3

F 3
2 + F2F 2

3 − 2F3F 2
2

)
(B-5)

This orientation of the spheroid symmetry axis relative to the Earth’s field makes the
angle between the induced dipole and the Earth’s field a maximum. This maximum
angle is obtained by substituting Equation (B-5) into Equation (B-4).
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Appendix C: Ambiguity in the Dipole Solution

Once the sensor distance exceeds a few body lengths distance away from the spheroid,
the field is essentially dipolar. In such cases, inversion for spheroid dimensions has an
inherent ambiguity: many different spheroid diameters and aspect-ratios can reproduce
the observed dipole. To characterize this ambiguity we chose our coordinate system so
that the z-axis is aligned with the Earth’s field,

Bo = (0, 0, Bo)T (C-1)

We want to determine if the dipole m̂ from a particular spheroid (diameter a and
aspect-ratio e) can match an observed dipole moment m. Now the induced dipole for
the spheroid is given by the following equation

m̂ = VAT FABo (C-2)

Expanding this equation we find

m̂ =
Boπea

3

6µo


 (F2 − F3) cos θ sin θ sinψ

(F2 − F3) cos θ sin θ cosψ
F2 cos2 θ + F3 sin2 θ


 (C-3)

Now we want to find a, e, θ and ψ so that m̂ = m. We can find an expression for the
spheroid diameter by equating the norms of the two dipole moments, resulting in

a3 =
6µo‖m‖

Boπe
√
F 2

2 cos2 θ + F 2
3 sin2 θ

(C-4)

For ψ we use,

m1

m2
=
m̂1

m̂2
=

sinψ
cosψ

= tanψ (C-5)

which leads to

ψ = arctan
(
m1

m2

)
(C-6)

This implies that the spheroid has the same azimuth as the dipole moment.
Determination of θ is a little more difficult. We start by using the second row of

Equation (C-3) and substitute in Equation (C-4) for the diameter,

m2

cosψ‖m‖ =
(F2 − F3) cos θ sin θ√
F 2

2 cos2 θ + F 2
3 sin2 θ

(C-7)

Note that if cosψ = 0 we would use the first row of Equation (C-3) to derive an equation
in terms of m1 and sinψ . Let the LHS of Equation (C-7) be ω, expand out the square-
root on the denominator of the RHS, and use the substitution

sin2 θ = 1 − cos2 θ (C-8)
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After some algebraic manipulation Equation (C-7) reduces to

(F2 − F3)2 cos4 θ
[
ω2(F 2

2 − F 2
3 ) − (F2 − F3)2

]
cos2 θ + ω2F 2

3 (C-9)

This is a quadratic equation in cos2 θ which has a real solution if

∆ = b̂2 − 4âĉ ≥ 0 (C-10)

where

â = (F2 − F3)2 (C-11)
b̂ = ω2(F 2

2 − F 2
3 ) − (F2 − F3)2 (C-12)

ĉ = ω2F 2
3 (C-13)

The solution in terms of θ is then

θ = ± arccos



√

−b̂±√
∆

2â


 (C-14)

The ± terms in the above equation emphasize that when ∆ > 0 there are actually two
possible solutions.

Determination of which spheroids can reproduce the observed dipole proceeds as
follows. Firstly, we chose an aspect-ratio e and calculate the demagnetization factors in
the usual way. We then substitute Equations (C-11) to (C-13) into Equation (C-10) to
determine if a solution can be found for this aspect-ratio. If it can, we calculate θ by
Equation (C-14), and finally we calculate the spheroid diameters (usually there will be
two) by Equation (C-4).
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