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ABSTRACT: Water-quality changes were interpreted from existing cycle test data obtained from

11 treated surface-water Aquifer Storage Recovery (ASR) systems located in South Florida. Six ASR
systems are located along the lower east coast (Palm Beach and Broward Counties), and five ASR
systems are located in Lee and Collier Counties. These diverse data sets were the basis for interpretations
of water-quality changes during ASR cycles in different regions. These data sets were interpreted to
provide guidance for cycle test performance at Comprehensive Everglades Restoration Plan (CERP) ASR
pilot sites. ASR and monitoring well data were interpreted for trends in water-quality changes. Estimates
of reaction rates or half-lives are based only on data obtained from monitoring wells during storage.
Analytes that are reactants or products in major geochemical reactions are: dissolved oxygen, nitrate and
ammonia, sulfate and hydrogen sulfide, gross alpha radioactivity and radium isotopes, and total trihalo-
methanes. Concentrations of these solutes in recovered water samples from recharge/recovery wells were
compared to state and Federal water quality regulations to identify regulatory exceedences. Concentra-
tions of arsenic and gross alpha in recovered water sometimes exceeded regulatory criteria at ASR sites in
Southwest Florida.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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Summary

Water-quality changes were interpreted from existing cycle test data obtained
from 11 treated surface-water Aquifer Storage Recovery (ASR) systems located
in South Florida. Six ASR systems are located along the lower east coast (Palm
Beach and Broward Counties), and five ASR systems are located in Lee and
Collier Counties. These diverse data sets were the basis for interpretations of
water-quality changes during ASR cycles in different regions. These data sets
were interpreted to provide guidance for cycle test performance at Comprehen-
sive Everglades Restoration Plan (CERP) ASR pilot sites. ASR and monitoring
well data were interpreted for trends in water-quality changes. Estimates of
reaction rates or half-lives are based only on data obtained from monitoring wells
during storage. Analytes that are reactants or products in major geochemical
reactions are: dissolved oxygen, nitrate and ammonia, sulfate and hydrogen
sulfide, gross alpha radioactivity and radium isotopes, and total trihalomethanes.

Dissolved oxygen (DO) is reduced during cycle testing at ASR systems in
Lee and Collier Counties, from 4- to 8-mg/L saturation to approximately 2-mg/L,
as measured throughout cycle tests in ASR well samples. Apparently, DO is con-
sumed along the flowpath prior to reaching the monitoring well during recharge
and storage. Half-lives calculated for DO are 1 day (Fort Myers — Winkler
Avenue) and 23 days (Lee County — Olga).

Nitrate reduction to ammonia (denitrification) is suggested from increasing
ammonia concentrations during storage, as measured at two ASR systems.
Ammonia concentrations in recovered water samples from the ASR wells at
Boynton Beach and Fiveash ASR systems exceeded the Florida Classes I and III
surface water-quality criterion (0.020 mg/L), although concentrations of volatile
ammonia likely will diminish by degassing during postrecovery water treatment.
Where measured (one site, Springtree — City of Sunrise), nitrate concentrations in
all cycle test samples were well below the Federal maximum contaminant level
(MCL) of 10 mg/L.

Sulfate concentrations vary during cycle testing at all ASR systems.
However, the processes that control sulfate concentration probably differ among
all sites considered. Although sulfate concentration increases through the cycle
test, concentrations of recovered water in ASR well samples do not exceed the
Federal MCL of 250 mg/L.

Limited hydrogen sulfide data (two ASR systems) suggest that microbe-
mediated sulfate reduction occurs during storage. It may be necessary to use
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laboratory methods rather than a field test kit for hydrogen sulfide data, because
concentrations are likely to be near or below the detection limit (0.10 mg/L) for
the field test method.

Gross alpha radioactivity and radium isotope activities show pronounced
regional trends. Elevated gross alpha radiation and radium isotope activity
occurred at those ASR systems in Southwest Florida that stored water within the
phosphate-rich Lower Hawthorn Group, and to a lesser extent in the Suwannee
Limestone. Gross alpha activity exceeded the Federal MCL (15 picocuries/L) in
some recovered water samples from ASR wells at all ASR systems in Lee and
Collier Counties except Corkscrew and North Reservoir. Radium isotope activity
data are not as abundant. However, radium isotope activities measured in
recovered water samples from ASR wells exceeded the Federal MCL at two ASR
systems in Lee and Collier Counties. No gross alpha data, and only limited
radium isotope data were available for ASR systems located in Palm Beach and
Broward Counties. Radium isotope activity measured in recovered water samples
from the Delray Beach ASR well was below the Federal MCL.

Trends in total trihalomethanes (TTHMs) concentrations reflect water treat-
ment strategies applied at each ASR system. Generally, TTHM concentrations
decline through the cycle test, so that concentrations are below the Federal MCL
(80 ng/L) in recovered water samples from both ASR and monitoring wells.

Arsenic concentrations in recovered water samples at the ASR well typically
are below the newly promulgated arsenic MCL (10 pg/L) at all sites except Lee
County — Olga. Arsenic concentrations were interpreted in the context of specific
analytical method and its respective minimum detection limit (MDL). Of the
11 ASR systems considered in this report, arsenic was analyzed in cycle test
samples at 7 of the systems. All seven ASR systems analyzed arsenic using the
graphite furnace atomic absorption method, with an MDL of 3 to 5 pug/L. Of
those seven ASR systems using the appropriate analytical method, one ASR
system (Lee County — Olga) showed arsenic concentrations in recovered water
samples that exceeded the arsenic MCL. The Marco Lakes — Expanded ASR
system has three ASR wells, of which two showed arsenic concentrations that
sometimes exceeded the MCL during recovery.

Data and interpretations presented here provide qualitative guidance for
sampling design and analysis during CERP ASR pilot cycle tests. However, there
are some limitations to these data sets, identified as follows:

a. Major dissolved anions and cations are not analyzed consistently in each
sample of a cycle test; therefore, charge balance errors cannot be calcu-
lated for quality assurance.

b. Qualitative trends in regional water-quality changes can be inferred from
these data, but only for radium isotopes and gross alpha radioactivity.
Sulfate concentrations increase during cycle testing because of gypsum
dissolution, mixing of native and recharged water, and microbe-mediated
sulfate reduction. It is not possible to identify the controlling mechanism
for sulfate variation with these data. A quantitative understanding of



sulfur cycling will require sulfur isotope analyses of specific phases in
water and rock.

c. Few data sets comprise samples from both ASR and monitoring wells
through a complete cycle test. Ideally, reaction rates of major geochemi-
cal reactions are calculated from data obtained during storage from moni-
toring wells, so that concentration variations that result from rapid flow
rates are minimized. Reaction rates could only be estimated for dissolved
oxygen reduction at a few sites, owing to insufficient data for quantita-
tive analysis.

Major recommendations for further work to support CERP pilot sites are as
follows:

a. As site-specific hydrogeologic data are obtained from CERP pilot site
drilling operations, datasets from nearby ASR system operations should
be used to guide CERP cycle test performance.

b. The geochemical evolution of the Upper Floridan aquifer during cycle
tests is not well-defined with respect to redox condition. Because redox
condition affects microbiology, metal mobility, and hence recovered
water quality, efforts should be made to better characterize the redox
condition of the aquifer environment as oxygenated recharged water
mixes with anoxic native ground water.

¢.  Radium isotopes and gross alpha activity exceed MCLs in recovered
water samples at many ASR systems of Southwest Florida. Particular
focus on discrete flow zones (Intermediate aquifer system, and perme-
able zones within the Lower Hawthorn Group and Suwannee limestone)
should be initiated at the Caloosahatchee ASR pilot site.

d. Preliminary data presented here indicate that total trihalomethanes
concentrations do not increase during storage, and decrease throughout
cycle tests in ASR systems surveyed here. However, because total
trihalomethanes concentrations are a sensitive issue, it would be prudent
to ensure that cycle tests confirm the hypothesis of natural attenuation.



Chapter 1

1 Introduction

Objectives

Aquifer Storage Recovery (ASR) systems have been in development and
operation throughout South Florida since the early 1980s (Pyne 1994), and many
systems have expanded through the addition of recharge/ recovery (or ASR)
wells and distribution infrastructure. Some Comprehensive Everglades Restora-
tion Plan (CERP) ASR pilot sites will be located near existing ASR facilities, or
will operate in similar hydrogeologic or hydraulic conditions. Therefore, water-
quality data obtained from existing ASR systems ideally can have a beneficial
predictive value to guide cycle test development at the CERP ASR pilot sites.
The objectives of this report are:

a. To compile all relevant existing water-quality data obtained during ASR
cycle tests conducted in the Upper Floridan Aquifer in South Florida.

b. To provide preliminary interpretations of water-quality changes that
occur during ASR testing at South Florida ASR systems.

c. To identify data gaps in the water-quality data sets, in preparation for a
subsequent geochemical modeling efforts.

ASR Systems Surveyed in this Report

This report summarizes water-quality data collected during cycle testing at
11 potable water ASR systems in South Florida (Table 1). ASR systems are
arranged by county, but also represent two distinct hydrogeologic regions. Five
sites are located along the lower east coast of Florida (Palm Beach and Broward
Counties), and six sites are located in Southwest Florida (Lee and Collier
Counties).

Description of Water-Quality Data Sets from ASR
Systems

Water-quality analyses are performed during cycle tests primarily to assess
ASR system performance and also to ensure that recovered water meets state and
Federal drinking-water-quality criteria. ASR system performance is quantified

Introduction
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Chapter 1

during cycle testing as recovery efficiency, which is the percentage of recharge
water recovered at the ASR well that meets numerical state and Federal drinking-
water-quality standards. Typically, recovery efficiency is the volume of water
recovered that meets the Federal Maximum Contaminant Level (MCL) for
chloride (250 mg/L; Code of Federal Regulations (CFR) 2002). Other analytes
are measured during cycle testing to ensure that recovered water concentrations
are less than MCLs. Arsenic, fluoride, nitrate, nitrite, total trihalomethanes,
radium isotopes, and gross alpha radioactivity have enforceable primary MCLs,
although these are not analyzed at all ASR systems. Chloride, iron, manganese,
and sulfate have nonenforceable secondary MCLs (primarily for aesthetics), and
also are not analyzed at all ASR systems. All water-quality data reported here
were measured at laboratories certified by either the Florida Department of
Health, or by the U.S. Environmental Protection Agency (USEPA), National
Environmental Laboratory Accreditation Conference (NELAC). The types of
water-quality analytes, sampling frequency, and sampling location (ASR and/or
monitoring well) are compiled in Table 1.

Sampling and Analysis Strategies

The strategy for sampling and analysis of water quality during cycle testing
at ASR systems varies by site and through time. Because analyses are costly,
most cycle test sampling strategies are designed to:

a. Fulfill state and Federal Underground Injection Control permitting
requirements for Class V wells.

b. Quantify recovery efficiency.

¢.  Address site-specific water-quality issues related to analytes that have
primary MCLs.

Generally, it is not the goal for ASR system performance studies to address
geochemical or microbiological changes that occur in the storage zone during
cycle testing. Typically in these data sets, ground water was sampled at the start
and end of storage, so that geochemical changes are inferred from limited initial
and final data. However, storage samples were collected at a few ASR systems
from both ASR and monitoring wells. These data are most useful for quantifying
geochemical changes and reaction rates that occurred during cycle tests.

Interpretations of water quality can differ between ASR (recharge/recovery)
well data and monitoring well data. ASR well samples are best to show the
characteristics of stored water for drinking-water treatment and to fulfill permit
requirements. However, monitoring well samples are better suited for an analysis
of physical and chemical changes that occur in the aquifer during cycle testing
and to provide a more quantitative basis for modeling efforts. Degassing of
volatile constituents and well-bore mixing (Campbell et al. 1997) during
recovery in the ASR well can obscure the in situ composition of recharge water
in the aquifer. For this reason, quantitative interpretations of water-quality evolu-
tion in the aquifer are best made from monitoring well data. Data from both well
types (as available) are presented in this report.

Introduction



Data Set Characteristics

Characteristics of the ideal data set to interpret water-quality changes during
cycle testing are:

a. Samples are obtained weekly or semimonthly from both ASR and moni-
toring wells during recharge, storage, and recovery.

b. Storage duration is long, at least 1 month.

¢.  Samples are analyzed for all major dissolved cations and anions to permit
calculation of charge-balance error for each sample.

Surprisingly, no ASR system considered here fulfills all criteria (Table 1).
Despite this, regional trends of water-quality changes can be inferred because
sufficient data were obtained from cycle tests at several ASR systems in a region
(lower east coast of Florida and Southwest Florida). Miami — Dade County is not
represented because the Miami — Dade Water and Sewer Department
(MDWASD) — West well field water-quality data set is incomplete at this
writing. Collier County is represented by the Marco Lakes data sets, because the
Manatee Road ASR system is sampled only on a quarterly basis.

In South Florida, ASR systems are an increasingly common means for water-
supply management, facilitated by abundant surface water (or Biscayne aquifer
water) resources for recharge during the wet season. Consequently, many facili-
ties are expanding to become large-volume systems with multiple ASR wells.
Unfortunately, the growth of these systems has not resulted in more detailed,
complete water-quality data sets. This compilation represents data sets from
diverse operations at which sampled wells, sample frequency, and analytes
varied. Therefore, limited interpretations of temporal changes in water-quality are
proposed.

Data Set Criteria

To compare diverse ASR systems, data sets were focused using the following
criteria:

a. Use of early cycle test (usually cycle 1 or 2) data.

b. Use of early cycle tests that have long (greater than 30 days) storage
durations.

c¢.  Comparison of water-quality data obtained from ASR and monitoring
well samples at each site.

Interpreting cycle test data that fulfill these criteria will enable estimates of
regional water-quality changes that occur over time, in permeable zones within
the upper Floridan aquifer. Estimated reaction rates are offered where storage
data are sufficient. Well field configurations for ASR systems reported here are
shown in Table 2. ASR cycle test schedules and recovery efficiencies are
tabulated in Appendix A.
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2 Results

Water-Quality Changes During ASR Cycle Tests

Significant water-quality changes that occur during ASR cycle tests will be
described using single analytes. These data form the basis for preliminary inter-
pretations of regional and temporal trends in water quality. Table 3 summarizes
relevant Florida and Federal water-quality standards for comparison.

Table 3
Florida and Federal Water-Quality Standards
Florida Florida
US EPA Class | Class lll
Maximum Surface Surface
Contaminant | Water Water
Analyte Unit Level (MCL) |Criteria Criteria Note
Alkalinity mg/L as -- >20 >20
CaCO®
Ammonia, mg/L as NH;| - <0.02 <0.02
un-ionized
Total Arsenic ug/L 10 10 10 Effective Jan 1, 2005, in
Florida. Federal MCL
effective Jan 2006
Chloride mg/L 250 250 -- Secondary Federal MCL
Dissolved mg/L -- >5.0 >5.0 Normal surface water
Oxygen fluctuations maintained
Fluoride mg/L 4 <15 <10
Total ug/L 80 <100 - Federal MCL effective
Trihalomethanes 31 Dec 2003
Iron mg/L 0.3 <0.3 <1.0 Secondary Federal MCL
Manganese mg/L 0.05 -- - Secondary Federal MCL
Nitrate mg/L 10 <10 - See nutrient regulations
for FL Class lll criteria
pH standard 6.5-8.5 6 - 8.5 or <1 unit from
units background
Phosphorus mg/L -- -- --
Sulfate mg/L 250 - -- Secondary Federal MCL
Ra?® + Ra*® picocuries/L | 5 <5 <5
Gross Alpha picocuries/L | 15 <15 <15
Note: -- = no standard exists.
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Chapter 2

Dissolved Oxygen

The first significant water-quality change to occur during ASR cycle testing
is reduction of dissolved oxygen (DO). Determining spatial and temporal trends
of DO reduction is significant, because an oxic versus anoxic conditions in the
aquifer will control major inorganic and microbial reactions. In this report, only
ASR systems in Lee and Collier Counties had sufficient DO data for interpreta-
tion (Figure 1).

DO concentrations should decline away from the ASR well and also through-
out the cycle test. During recharge, DO concentrations will be higher in ASR
than monitoring well samples, reflecting proximity to oxygen-saturated recharge
water. DO concentrations diminish at both wells during storage, although well-
bore mixing may allow oxygen diffusion unless wells are completely purged and
the sampling method excludes contact with the atmosphere. In the presence of
oxidizable material or aerobic bacteria, DO should be consumed as it travels
along a flowpath from the ASR well during cycle testing. During recovery, DO
concentrations in both wells should converge to an approximate concentration
(less than 1 mg/L DO) that reflects native ground-water conditions. These trends
are exemplified in cycle test data sets from Lee and Collier Counties (Figure 1).

The DO concentration in fresh surface water at standard conditions (25 °C,
1 atm pressure) is approximately 8 mg/L (Appelo and Postma 1993). The DO
concentration of recharge water in ASR well samples at all sites ranges between
4 and 8 mg/L, which reflects differences in saturation from seasonal and/or tem-
perature differences. After recharge, oxygen-saturated water encounters oxidiz-
able material in the aquifer (for example, pyrite and organic carbon) and perhaps
aerobic bacteria, which diminish DO concentration and reduce Eh of the aquifer
environment. ASR systems shown here have the following configurations: the
distance between ASR and monitoring well ranges between 0.61 and 229 m
(200 and 750 ft); recharge rate ranges between 0.5 and 3 MGD; and storage dura-
tion ranges between 12 and 168 days (Table 2, Figure 1). By the completion of
storage during these cycle tests, DO concentrations throughout the subsurface
system converge at concentrations of approximately 2 mg/L. It appears that under
typical pumping conditions and aquifer material composition, DO does not
persist as it travels along the flowpath toward monitoring wells. The Eh of the
aquifer will reduce at some distance away from the ASR well. At ASR systems
considered here, DO is reduced before reaching the monitoring well.

Temporal trends observed in DO concentration data can provide an estimate
of reduction rate in the aquifer environment. Ideal data for calculation of reduc-
tion rate would be those samples measured throughout storage, to avoid concen-
tration changes that result from ground-water flow. Because significant changes
in DO concentration are not observed in the monitoring well samples, an estimate
of DO reduction rate must come from ASR well samples. Only the Lee County —
Olga and Fort Myers — Winkler Avenue sites have sufficient storage data for rate
estimates. Assuming that oxygen reduction proceeds as a first-order reaction,
half-lives calculated from Fort Myers — Winkler Avenue (k = -0.73 day ') and
Lee County — Olga (k = -0.03 day ') data sets are 1 day, and 23 days,
respectively.
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Theoretically, there should be no dissolved oxygen detected in distal monitoring
well samples, particularly after long-storage durations. The detection of DO at
1-2 mg/L concentrations may be because of the following factors:

a. Absence of oxidizable material and/or aerobic bacteria in the Upper
Floridan aquifer.

b.  Measurement of DO in the well bore using an uncalibrated DO probe.

c.  Atmospheric oxygen diffusion into the well bore, well-head flow-cell, or
sample bottles during sample acquisition.

d. Episodic recharge during storage.

Finally, it is important to note that the use of oxidation-reduction probes do not
provide a good estimate of redox state, especially in oxic waters (Lindberg and
Runnells 1984). Field measurements of Eh in oxic waters ranged from approxi-
mately 0 to +0.5 volts, probably because probe surfaces are not electro-active
toward O, molecules. DO concentration measurements (by Winkler titration in
the field; APHA (1998a)) are preferred for estimation of Eh values in oxic
waters. In situ measurement of DO will be very important supporting data for
microbial ecology and pathogen survival studies.

Ammonia and Nitrate

After dissolved oxygen reacts, the next constituent to be reduced is nitrate.
The reduction of nitrate (denitrification) by electron donors such as organic
matter, ferrous (Fe*) iron, or hydrogen sulfide has been observed in reclaimed
water ASR systems in Florida and South Australia, (Pyne 2002; Vanderzalm et
al. 2002). Typically, nitrate will reduce through a series of reactions to either N,
or ammonia (NH;). ASR systems that recharge with treated surface or Biscayne
aquifer water show much lower nitrate concentrations than reclaimed water
systems, so the effect of nitrate reduction on the aquifer redox environment is not
as significant. The primary drinking-water MCL for nitrate is 10 mg/L (CFR
2002). The Florida Class I and Class III surface water-quality criterion for nitrate
is less than 10 mg/L, and for ammonia is less than 0.02 mg/L (Florida Depart-
ment of Environmental Protection (FDEP) 2003)

Few ASR systems measure nitrate or ammonia during cycle testing.
Ammonia was analyzed at five ASR systems surveyed here but was detected
only at Boynton Beach, Fiveash, and Springtree — City of Sunrise sites. Nitrate
was analyzed at six ASR systems but was detected only at the Springtree — City
of Sunrise site (Table 1, Figure 2). Ammonia concentrations in all wells at
Boynton Beach, Fiveash, and Springtree — City of Sunrise ASR systems suggest
that denitrification occurs at some point during the cycle test, resulting in
ammonia concentrations that exceed the State of Florida surface-water quality
criterion.

Ammonia evolution during storage is suggested from monitoring well data at

the Fiveash and Boynton Beach ASR systems (Figure2). Ammonia concentra-
tions increase to nearly 1.0 mg/L throughout cycle test 6 at Boynton Beach

Chapter 2

Results



so|dwes |jam Buojiuow pue YSY Ul S}sa) 81942 Bulinp painseawl suolesjuaduod (Ajuo sauibulidg) ajesiiu pue eluowiwe paAjossiq g a.nbi4

sKeq ul ‘sl sAeq@ ul ‘owiL
00F 00€ 00e 00l 0 (10 4 00g 002 001 0
i i i i 1 i i i i 1 i i i i L i i i i 0.0 " i i i 1 i i i i 1 i i i i 1 i -"' i i O-O
WBw|LLL epuolya Buipus ‘(NMOHS) ¢
& aBeJoys Aep zgl ‘9 219AD O
nmun% 20 VBw |1z apudo|ya Bujpus
sa[dures [|am HSY Wol) elep [y aBei03s Aep | '¢ 21940 - | .
WBW LLL spuoyd Bujpus 5 V0 Gl
‘abelo)s Aep 2gl ‘9 91940 —@—
BW |1z spuojyd Bujpus L 90 = [ >
‘aBedoys Aep | ‘¢ 9194y —O— = 3
] 3 p L +03
5 5
3 F 903
=
- 7l
- 80
- 9°1
pHANASTE SEvHaLE SSHRHASH g AHIA0D3Y 39V40LS J9uVHIIN -
oS ¥SY esuuns Jo Au3 - senbunds 2)Is ¥ Sy asuung jo AN - sanbuudg
sAeq ul ‘awl . . . ’
q ul 1L sAeq ul ‘awi]
006 008 00L 009 008 OOF 00E 00Z OO0I 0 091l orl (ir4% 001 08 09 or 174 0
1 1 Il 1 1 1 Il L 0.0 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i OO
VOW P2 ‘IAIMOTHO ONIANS
TOA 2DVHOLS TVOW ¥22T |
FOVHOLS AVA ZeP B 3TOAD s
"M 112p Bunopuoly —G— 0
. 119M HSY —@— "
5 5
L 70 3
L g 2
L ) o 1 B
5 5
E] - 90 3
Qe @
r | -
) soldwes [|am HSY Wolp exep Iy | a0
0L YBw go¢ apHoy2 Bulpus
| ‘abelojs Aep 9 ‘9220 —— |
A¥3A023Y 3ovdoLs F9UVHOTY A¥3N0D3Y 3ovyols ADUYHOIY
A o'l

SIS YSY Yseanid alis YSY Yoeag uohog

Results

Chapter 2



12

(cycle test 6 was the first operational test that had a storage period greater than 1
week). At the Fiveash ASR system, ammonia concentrations from monitoring
well FMW-1 suggest ammonia evolution in the aquifer. However, linear regres-
sion of ammonia concentrations versus time in those storage samples shows no
statistical significance (r* = 0.02). Episodes of recharge (20 to 40 days in dura-
tion) were performed throughout the 432-day storage period. It is possible that
ground-water flow resulted in the variable ammonia concentrations during
storage in the Fiveash data set.

Nitrate concentration data are rare in these South Florida data sets, with
detectable nitrate occurring only at the Springtree — City of Sunrise ASR system
(Figure 2). Maximum nitrate concentration at Springtree — City of Sunrise was
2.0 mg/L during all cycle tests. State and Federal water-quality criteria were
never exceeded at this site.

Sulfate

Quantifying changes in dissolved sulfate during cycle testing will be
important because sulfate in recovered water may contribute to sulfur loading in
Everglades surface water. Higher sulfate concentrations in surface water can
stimulate sedimentary sulfate-reducing bacteria and enhance mercury methyla-
tion in the process (Marvin-Dipasquale and Oremland 1998). Sulfate concentra-
tions in northern Everglades surface-water range between 10 and 200 mg/L
(Bates et al. 2002), with higher values reflecting the addition of sulfur amend-
ments in the Everglades Agricultural Area. Sulfate concentrations in recovered
water samples can increase (compared to recharged water) as the result of two
processes: (a) mixing with brackish native water of the Upper Floridan aquifer in
some areas (sulfate concentrations range between100 and 1,000 mg/L (Reese and
Memberg 2000; Reese 2000)); and (b) gypsum (CaSQy,) dissolution in aquifer
material (Reese 2000; Wicks and Herman 1996). Sulfate concentrations in
recovered water samples can diminish because of microbial sulfate reduction in
the Upper Floridan aquifer, which will proceed in the absence of DO (Katz
1992). Recovered water is not expected to exceed the sulfate secondary MCL of
250 mg/L (CFR 2002).

Spatial variations of sulfate concentration are observed in the cycle test data
sets, although the specific basis for variation (geologic versus hydrologic) cannot
be identified. Sulfate concentrations measured in ASR well samples increased
through each cycle test at all sites, except for Corkscrew — Expanded ASR
system (Figure 3). Sulfate concentrations in samples from ASR wells were below
the MCL at completion of recovery.

Native sulfate concentrations in the upper brackish zone of the Upper
Floridan aquifer do show spatial variations. In Southwest Florida, minimum
sulfate concentrations (generally less than 300 mg/L) are observed in wells at
central Lee County, with increasing concentrations toward the south and west
(Reese 2002). In Palm Beach County, sulfate concentrations in the upper
brackish zone of the Upper Floridan aquifer (depths 198 to 305 m (650 to
1,000 ft) below land surface) range between 100 and 500 mg/L (Reese and
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Memberg 2000). Pumping during recovery results in mixing between recharged
and native ground waters to increase sulfate concentration at coastal facilities.

Temporal trends in sulfate concentration during storage can result from two
competing processes: gypsum dissolution to increase sulfate concentration; and
sulfate reduction to decrease concentration. The flux of sulfate from gypsum
dissolution likely exceeds that from sulfate reduction, so it is not possible to infer
sulfate reduction rate from sulfate concentrations data alone. Three ASR systems
have sufficient sulfate concentration data collected during storage to interpret
temporal trends: Delray Beach, Fiveash, and Bonita Springs/San Carlos Estates
(Figure 3). Linear regression of sulfate concentrations versus time shows no
statistical relationship, except in monitoring well data from Bonita Springs/San
Carlos Estates. There, sulfate concentration declines during storage, as measured
in monitoring well (but not ASR well) samples. Diminished sulfate concentration
during storage could result from gypsum precipitation, sulfate reduction, or mix-
ing between native ground water and fresher recharge water. Hydrogen sulfide
and mineralogical data are not available at this site, so it is not possible to
interpret declining sulfate concentrations unequivocally.

Because sulfate geochemistry is complex, it will be necessary to constrain
sulfate and hydrogen sulfide data with isotopic measurements to support any
conclusion. The sulfur isotopic composition (5**S) is characteristic of a sulfur
source (Bates et al. 2002), whether sulfate appears from gypsum dissolution,
pyrite oxidation, seawater mixing, or surface water affected by agricultural run-
off. Similarly, hydrogen sulfide generated during subsurface microbial sulfate
reduction also has characteristic 8°*S. Concentration data presented here indicate
that many processes contribute to increased sulfate concentration during cycle
testing; however, the dominant mechanism of increased sulfate concentration
cannot be specified with these data.

Dissolved Hydrogen Sulfide

Dissolved hydrogen sulfide evolves most likely from microbe-mediated
sulfate reduction in the Upper Floridan aquifer (Katz 1992). Although there is no
MCL for dissolved hydrogen sulfide, this compound would contribute to the total
odor number (TON) that is measured during water treatment. Typically, sulfate-
reducing bacteria produce hydrogen sulfide and increased alkalinity during
oxidation of organic matter. Decreased sulfate and increased hydrogen sulfide
and alkalinity were observed during storage in the Bolivar (South Australia)
reclaimed water ASR system, which is developed in a limestone aquifer
(Vanderzalm et al. 2002). Hydrogen sulfide was measured only at two ASR
systems during cycle testing: Fiveash (Broward County) and the Corkscrew (Lee
County) (Figure 4).

It is not possible to infer spatial trends in hydrogen sulfide concentration
because site-specific data are limited. Also, microbial sulfate reduction may show
patchy distribution, occurring where redox conditions, carbon source, and
ground-water flow rate are optimum for bacterial metabolism.
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Figure 4. Dissolved hydrogen sulfide concentrations measured during cycle tests in ASR and monitoring

well samples

Hydrogen sulfide evolution during storage is suggested from monitoring well
data at the Fiveash ASR system. However, linear regression of hydrogen sulfide
concentrations in storage samples versus time shows no statistical significance
(r* =0.075). As was observed with ammonia concentration data, episodic
recharge during storage probably obscured temporal trends of this constituent.

At many ASR systems, hydrogen sulfide concentrations are measured colori-
metrically, using a field test kit based on the methylene blue method (APHA
1998b). Minimum detectable hydrogen sulfide concentration is 0.1 mg/L when a
color wheel (rather than spectrophotometer) is used. This method may not be
suitable for conditions encountered during cycle testing at the CERP pilot sites,
because detection of very low dissolved hydrogen sulfide concentrations will be
necessary.

Gross Alpha Radioactivity and Radium Isotopes

Gross alpha radioactivity is a bulk measurement of the alpha particle activity
emitted during decay of uranium-series isotopes. Important daughter products are
radium, thorium, and uranium (Osmond and Cowart 2000), polonium 210 (Oural
et al. 1988), but not radon 222, which occurs as a gas. Radium-226 (half-life
1,600 yr; alpha emitter) and radium-228 (half-life 5.75 yr, beta emitter) are
daughters in the decay sequences of uranium-238 and thorium-232, respectively.
Radium isotopes in drinking water are of particular interest because of their rela-
tively long half-lives, health implications of high-energy alpha particle emission,
and that radium coprecipitates in carbonate and bone/apatite. Radium isotopes are
a significant component of gross alpha activity in the Floridan aquifer (Osmond
and Cowart 2000). Bioaccumulation of radium-226 has been documented in
unionid mussels living in Round Lake (Hillsborough County), which is aug-
mented by Upper Floridan aquifer water (Brenner et al. 2000). The drinking-
water MCLs are 15 picocuries per liter (pCi/L) for gross alpha, and 5 pCi/L for
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radium 226+228. Florida surface-water quality criteria are <15 pCi for gross
alpha, and <5 pCi/L for radium 226+228 (FDEP 2003).

There are pronounced spatial variations in gross alpha activity among ASR
systems. Elevated gross alpha radiation occurs at sites where storage is within
permeable zones of the Lower Hawthorn Group, and these sites typically occur in
Southwest Florida (Figure 5). Sediments of the Lower Hawthorn Group are
characterized by zones of abundant phosphate (>3 percent; Reese 2000), which
are enriched in uranium and daughter isotopes. Trace to abundant phosphate also
has been observed in sediments of the upper Suwannee Limestone in Lee
Counties (Reese 2000). In Lee and Collier Counties, the Lower Hawthorn unit
occurs generally at depths between 122 to 244 m (400 and 700 ft) below land
surface, stratigraphically underlain by the Suwannee Limestone. All ASR
systems in Lee and Collier Counties reported here use permeable zones within
the Lower Hawthorn Group for storage, with the exception of the Olga, North
Reservoir, and Corkscrew sites. At these sites, recharge is within permeable
zones of the Suwannee Limestone (Olga and North Reservoir), or the Inter-
mediate aquifer systems (Corkscrew; Table 2). Gross alpha activity exceeded the
state and Federal MCL (15 pCi/L) in some recovered water samples from ASR
wells at all ASR systems in Lee and Collier Counties except Corkscrew and
North Reservoir (Figure 5).

Gross alpha activity data are not collected frequently from ASR systems on
the lower east coast of Florida. There, recharge occurs into permeable zones of
the Lower Hawthorn Group and “Eocene Group,” which consist of the
Suwannee, Ocala, and Avon Park limestones (Reese 2000), depending on
location. Apparently, phosphate is not abundant in these lithologies, so corre-
sponding gross alpha radiation is low. Gross alpha data were reported only from
the Fiveash ASR system (Broward County), which showed mean values of
<1.0 +/- 0.5 pCi/L at monitoring well MW-1 (n = 2, sample collected at the
beginning of recharge) and 3.6 +/- 1.4 pCi/L at the ASR well 1 (n = 2; sample
collected at the beginning of recharge).

Radium isotope (Ra**® + Ra**®) data are rare compared to gross alpha data.
Radium isotope data were measured only at three sites (Figure 6), and most of
these data were measured during recovery at the ASR well. Spatial trends in
radium isotope activity are similar to those shown by gross alpha data. Highest
activities are observed in ASR systems of Lee County that stored water in perme-
able zones of the Lower Hawthorn Group. Recovered water show radium isotope
activities that exceeded the state and Federal MCL at the Bonita Springs
Utilities — San Carlos Estates and Fort Myers — Winkler Avenue ASR systems.
Considering ASR systems of the lower east coast, radium isotope data are
reported at one site. Delray Beach (Palm Beach County) showed radium isotope
activities in recovered water that are below the state and Federal MCL. A
localized occurrence of elevated Ra**® was reported for soil and shallow ground
water in Dade County (Moore and Gussow 1991), but there is no indication that
this is related to Floridan aquifer isotope activities.
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Arsenic

Arsenic concentrations that exceeded past and present Federal MCLs have
been documented at ASR systems operating to the North of this study area, in
Hillsborough and Charlotte Counties (Arthur et al. 2001; Williams et al. 2002).
Arsenic analyses have been performed at many ASR systems surveyed here,
particularly in Lee and Charlotte Counties where hydrogeologic and lithologic
characteristics may be similar to more northern sites. Effective January 2005, the
State of Florida criterion for arsenic in Class I and Class III waters will decrease
from 50 pg/L to 10 pg/L. The Federal MCL for arsenic also will decrease to
10 pg/L effective January 2006 (Code of Federal Regulations 2001). In prepara-
tion, most Florida water treatment plants are revising arsenic analysis method-
ology to quantify lower arsenic concentrations.

Three analytical methods have been used during the past decade to quantify
arsenic concentrations in drinking water:

a. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES);
USEPA method 200.7), with which arsenic can be quantified at low
concentrations (approximately 10 to 20 pg/L) on certain instruments.

b. 1CP-Mass Spectrometry (ICP-MS); USEPA method 200.8), with which
arsenic can be quantified at the parts per trillion level.

¢. Graphite furnace atomic absorption (GFAA); USEPA methods 206.2 and
206.3), with which arsenic can be quantified below 5 pg/L.

The USEPA has withdrawn standard method 200.7 (ICP-AES) for analysis
of arsenic in drinking water, effective 2006.

To estimate whether arsenic concentrations exceed the new drinking-water
MCL (10 pg/L) during cycle tests at South Florida ASR systems, existing data
must be interpreted in the context of analytical method and its reported minimum
detection limit (MDL) (Table 4). An analysis that is reported as “below detection
level” may still exceed the arsenic MCL if that analysis was performed using
ICP-AES with relatively high MDL. In contrast, if arsenic was not detected using
the GFAA or ICP-MS methods, with MDLs at or below 5 pg/L, then it can be
reasonably concluded that arsenic concentrations are in compliance with the
drinking-water MCL.

Of the eleven (11) ASR systems considered in this report, arsenic was
analyzed in cycle test samples at seven (7) (Table 4). All seven ASR systems
analyzed arsenic using the graphite furnace atomic absorption method, with an
MDL of 3 to 5 ug/L. Of those seven ASR systems using the appropriate
analytical method, two ASR systems (Lee County — Olga and Marco Lakes,
Collier County; Figure 7) showed arsenic concentrations in recovered water
samples that exceeded the arsenic MCL. The Marco Lakes — Expanded ASR
system has three ASR wells, of which two showed arsenic concentrations that
sometimes exceeded the MCL during recovery.
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Table 4
Comparison of Analytical Methods for Arsenic and Minimum
Detection Limit Among Sites Reporting Arsenic Concentrations
Reported
Method of [Minimum
Arsenic Arsenic Detection |Dates of
County [Site Detections| Analysis Limit Analyses |Note
Palm Boynton Beach Not -- 1993-2000
Beach analyzed
Delray Beach (X) GFAA; 0.5 ppb 2000-2001
USEPA
206.2
Broward |BCOES WTP 2A |O GFAA; 10 ppb 1996-1997 |Background WQ
USEPA only
206.2
Fiveash WTP O GFAA; 2.2 ppb 1998 Recharge WQ
USEPA only
206.3
Sunrise/Springtree Not - 1997-2002
analyzed
Dade MDWASD West (0] ICP-AES; 50 ppb 1998 Background WQ
USEPA only
200.7
MDWASD (X) GFAA; 10 ppb 1998 Background WQ
Southwest USEPA only
206.2
Lee Bonita Springs/San | (X) GFAA; 3.2 ppb 1999-2001
Carlos Estates USEPA
206.2
Corkscrew ASR Not -- 1995-1996
analyzed
Corkscrew — (X) GFAA; 3 ppb 2001-2002
Expanded USEPA
206.3
Fort Myers — (X) GFAA; 10 ppb (5 [1999
Winkler Avenue USEPA ppb) (2001)
206.3
(X) ICP-MS; 0.4 ppb 1999
USEPA
200.8
North Reservoir (X) GFAA; 3 ppb 2001-2003
USEPA
206.3
Olga (X) GFAA,; 3 ppb 2001-2003
USEPA
206.3
Collier Manatee Road O ICP-AES; 50 ppb 2002-2003 [Recharge WQ
USEPA only
200.7
Marco Lakes O GFAA; 3.2 ppb 1998-1999 |Recharge &
USEPE Background WQ
206.2 only
Marco Lakes — (X) GFAA; 3.2 ppb 2001-2002
Expanded USEPA
206.2
Note: All data were obtained during cycle tests except those designated O, which are represented
by a limited (<5) number of analyses. (X) = 88% of all reported concentrations are below minimum
detection limit. MW = monitoring well; ASR = recharge well; WQ = water quality; GFAA = graphite
furnace atomic absorption; ICP-AES = inductively coupled plasma-atomic emission spectroscopy;
ICP-MS = inductively coupled plasma-mass spectroscopy.
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Figure 7. Arsenic concentrations measured during cycle tests in ASR well samples
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Total trihalomethanes

Total trihalomethanes (TTHMs) are a class of disinfection by-products

(DBPs). TTHM molecules are formed during the water treatment process by the
reaction of halogen gases (bromine and chlorine) with naturally occurring dis-
solved organic matter. TTHM concentration is the sum of chloroform, bromo-

form, bromodichloromethane, and dibromochloromethane. Chloroform and

bromodichloromethane are classified as probable human carcinogens (Toxnet
2003). Regulation of TTHMs in drinking water is specified by the Stage I
disinfection by-product rule (a revision of the Safe Drinking Water Act; USEPA
2001). The MCL for TTHMs is 80 pg/L. The transport and fate of disinfection
by-products in ASR systems is the subject of several investigations to quantify
whether TTHM concentrations decrease or increase during storage (Miller et al.
1993; Thomas et al. 2000; Fram et al. 2003). Apparently, TTHMs concentrations
in the aquifer are controlled by several physical and geochemical factors, includ-

ing the following:

a. Residual chlorine and bromine in recharge water.

b. Redox environment in the aquifer.

¢. Extent of mixing between recharge and native water during recovery.

Biodegradation does not appear to be a significant mechanism to reduce TTHM
concentrations in aquifers studied thus far (Thomas et al. 2000; Fram et al. 2003).

Trends in TTHM concentrations depend on the method of water treatment at
each ASR system, rather than on geologic or hydraulic factors. TTHM concentra-
tions typically were greatest in recharge water samples from the ASR well, and
declined during the rest of the cycle test (Figure 7). TTHM concentrations

exceeded the MCL in recharge water samples at the Marco Lakes, Olga, and
North Reservoir sites during cycle tests 1 or 2 (Figure 8), but concentrations

declined to levels less than the MCL during recovery at all sites.
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Existing cycle test data suggest that TTHMs are not produced during storage
in South Florida ASR systems. The best data to show changing TTHM concen-
trations would be obtained from proximal monitoring wells sampled frequently
during storage, or at least at the beginning and end of storage. Monitoring well
samples from Springtree — City of Sunrise, Bonita Springs, Corkscrew —
Expanded, Marco Lakes, Olga, and North Reservoir ASR systems show TTHM
concentrations less than 50 pg/L throughout the cycle test (Figure 8). TTHM
concentrations in these samples do not increase or remain constant during
storage. Monitoring wells are located between 66 and 229 m (217 and 750 ft)
from the ASR well at theses sites. TTHM formation during storage may be
suggested at the Delray Beach and Fort Myers — Winkler Avenue ASR systems;
however, TTHM concentration trends are defined by fewer data points, or data
were measured in ASR well samples and may not be representative of aquifer
conditions. Because South Florida ASR systems indicate that TTHM formation
in storage zones is not significant, no temporal trends could be defined.
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Chapter 3

3 Conclusions

Water-quality changes were interpreted from existing cycle test data obtained
from 11 treated surface-water ASR systems located in South Florida. Six ASR
systems are located along the lower east coast (Palm Beach and Broward
Counties); five ASR systems are located in Lee and Collier Counties. These
diverse data sets were the basis for interpretations of water-quality changes
during ASR cycles in different regions. Quantification of temporal changes in
water-quality was limited because data were not sufficient. Temporal changes
consist of reaction rates for a few major geochemical reactions. Analytes that are
reactants or products in major geochemical reactions are: dissolved oxygen,
nitrate and ammonia, sulfate and hydrogen sulfide, gross alpha radioactivity and
radium isotopes, and total trihalomethanes.

Ideally, major geochemical reactions and reaction rates are interpreted from
analyses of samples collected during storage from monitoring wells. These
samples provide a more quantitative record of reaction between water, aquifer
material, and microbial activity in the aquifer environment than do samples from
the ASR well. Degassing of volatiles and well-bore mixing during recovery in
the ASR well will obscure ground-water concentrations that characterize the
aquifer environment. For these reasons, ASR and monitoring well data were
interpreted for trends in water-quality changes. Estimates of reaction rates or
half-lives are based only on data obtained from monitoring wells during storage.

Dissolved oxygen (DO) is reduced during cycle testing at ASR systems in
Lee and Collier Counties. DO concentration is reduced from 4- to 8-mg/L
saturation to approximately 2 mg/L, as measured throughout cycle tests in ASR
well samples. DO concentrations do not vary significantly in samples from
monitoring wells located 200 to 750 ft from the ASR well. Apparently, DO is
consumed along the flowpath prior to reaching the ASR well during recharge and
storage. Half-lives calculated for DO are 1 day (Fort Myers — Winkler Avenue)
and 23 days (Lee County — Olga). Concentrations of 1 to 2 mg/L DO in samples
collected during storage and recovery suggest that oxygen diffusion during
sample measurement and collection may have occurred.

Nitrate reduction to ammonia (denitrification) is suggested from increasing
ammonia concentrations measured at three sites: Boynton Beach, Fiveash, and
Springtree — City of Sunrise. Ammonia concentrations in recovered water
samples from the ASR wells at these sites exceed the Florida Classes I and 111
surface water-quality criterion (0.020 mg/L), although concentrations of volatile
ammonia will likely decline by degassing during postrecovery water treatment.

Conclusions
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Where measured, nitrate concentrations in all samples are well below the Federal
MCL of 10 mg/L.

Sulfate concentrations vary during cycle testing at all ASR systems. How-
ever, the processes that control sulfate concentration probably differ among all
sites considered. Sulfate concentration increases during cycle testing as the result
of dissolution of gypsum (CaSQy,) in aquifer material, and/or mixing of recharged
water with seawater or brackish native ground water. Although sulfate concen-
tration increases through the cycle test, concentrations of recovered water in ASR
well samples do not exceed the Federal MCL of 250 mg/L.

Limited hydrogen sulfide data suggest that microbe-mediated sulfate reduc-
tion occurs during storage. Hydrogen sulfide concentrations measured at Fiveash
(432-day storage) and Corkscrew (103-day storage) monitoring wells increase
during storage, although statistical support for an increasing trend is weak. It may
be necessary to use laboratory methods rather than a field test kit for hydrogen
sulfide data, because concentrations are likely to be near or below the detection
limit (0.10 mg/L) for the field test method.

Gross alpha radioactivity and radium isotope activities show pronounced
regional trends. Elevated gross alpha radiation and radium isotope activity occurs
at those ASR systems in Southwest Florida that use permeable zones within the
phosphate-rich Lower Hawthorn Group as the storage zone, and to a lesser extent
the Suwannee Limestone. Gross alpha activity in recovered water samples from
ASR wells exceed the Federal MCL (15 picocuries/L) at all ASR systems in Lee
and Collier Counties except Corkscrew and North Reservoir. No gross alpha data
were available for ASR systems located in Palm Beach and Broward Counties.

Radium isotope (Ra*** + Ra***) activity data are rare compared to gross alpha
data. Because radium isotope activity is a significant proportion of gross alpha
activity, similar trends are observed with both constituents. Radium isotope
activities as measured in ASR well samples exceed the Federal MCL at Bonita
Springs Utilities and Fort Myers — Winkler Avenue ASR systems. Limited data
from one site (Delray Beach) suggests that radium isotope activities do not
exceed the MCL in ASR systems of the lower east coast.

Few ASR systems surveyed here show increasing arsenic concentration
during cycle testing. Seven (7) ASR systems (of eleven (11) surveyed) analyzed
arsenic using the graphite furnace atomic absorption method, for quantifying
concentrations below the arsenic MCL (10 pg/L). Of these seven ASR systems,
two (Olga and Marco Lakes — Expanded) show arsenic concentrations in
recovered water that exceeded the arsenic MCL. The storage zones of these two
sites are in the Suwannee Limestone (Olga) and the Arcadia Formation (Marco
Lakes), at depths of approximately 224 to 280 m (735 to 920 ft).

Trends in TTHM concentrations reflect water treatment strategies applied at
each ASR system. The highest TTHM concentrations are measured during
recharge in ASR well samples. Generally, TTHM concentrations decline through
the cycle test, so that concentrations are below the Federal MCL (80 pg/L) in
recovered water from both ASR and monitoring wells. Increased TTHM
concentrations during storage were observed only in ASR well samples at the

Chapter 3

Conclusions
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Delray Beach and Fort Myers — Winkler Avenue ASR systems, but these data
probably do not represent aquifer conditions.

Data and interpretations presented here provide qualitative guidance for
sampling design and analysis during CERP ASR pilot cycle tests. However, there
are some limitations to these data sets, identified as follows:

a.

Conclusions

Major dissolved anions and cations are not analyzed consistently in each
sample of a cycle test so that charge balance errors cannot be calculated
for quality assurance

Qualitative trends in regional water-quality changes can be inferred from
these data but only for particular analytes (radium isotopes and gross
alpha radioactivity). Examination of sulfate and hydrogen sulfide cycles
will require sulfur isotope analyses of specific phases in water and rock
samples.

Few data sets comprise samples from both ASR and monitoring wells
through a complete cycle test. Ideally, reaction rates of major geo-
chemical reactions can be calculated from data obtained during storage
from monitoring wells. Reaction rates could only be estimated for
dissolved oxygen reduction at a few sites, owing to insufficient data for
quantitative analysis.
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Appendix A
Cycle Test Schedules

Table A1
Marco Lakes, Collier County
Volume (Mgal) Recovery |Recovery
Duration Efficiency |Chloride
Cycle/Phase |Begin End Days Recharge |Recovery |% mg/L Reference
1/Recharge 6/26/1997 (8/4/1997 54 19.7 ViroGroup, Inc.
1/Storage -- -- 0 (1998)1
1/Recovery 8/4/1997  (8/14/1997 10 4.41 22.4 252
8/19/1997 15 6.045 30.7 384
2/Recharge 8/21/1997 (11/17/1997 | 87 86.6 ViroGroup, Inc.
2/Storage 11/17/1997 [1119/1998 | 63 (1998)
2/Recovery 1/19/1998 |2/10/1998 22 3.801 44 252
14.81 171 356
3/Recharge 3/5/1998  (3/31/1998 26 21.045 ViroGroup, Inc.
3/Storage 3/31/1998 |4/2/1998 2 (1998)
3/Recovery  [4/2/1998  |4/3/1998 1 6.992 33.2 250
4/27/1998 25 15.808 75.1 385
4/Recharge 9/1/1998  (1/13/1999 110.9 Water Resource
4/Storage 1/13/1998 |4/8/1999 83 Solutions (1999)
4/Recovery  |4/8/1999  |6/21/1999 68 38.9 35.1 250
55 49.6 350
5/Recharge 8/19/1999 (1/6/2000 139 132 Water Resource
5/Storage 1/6/2000  |4/17/2000 |101 Solutions (2000)
5/Recovery  [4/17/2000 |7/10/2000 84 67 50.8 350
1E/Recharge |8/24/2001 |12/11/2001 | 109 100 (ASR-1) 3 ASR wells (ASR-
130 (ASR-2) 1'_25_3)' At)SR'Z"?’
o5 (AR sonae egan
recharge began
1E/Storage 12/11/2001 |4/2/2002 112 10/4/2001
1E/Recovery |4/2/2002 |6/24/2002 83 55 (ASR1) | 55 250 Water Resource
49 (ASR-2)| 37.7 350 Solutions (2002c)
38.5
(ASR-3) 40.5 350

Note: Cycle test schedule and performance characteristics for the Marco Lakes ASR system, Collier County. Cycles 1 through 5
were conducted prior to expansion of production facilities. Cycle 1E was conducted after site expansion from one to three ASR
wells.

References cited in Appendix A can be found in the References section following the main text.
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Table A2
Fort Myers — Winkler Avenue ASR Site, Lee County

Volume (Mgal) Recovery Recovery
Duration Efficiency Chloride
Cycle/Phase |Begin End days Recharge |[Recovery [|% mg/L Reference
1/Recharge |11/15/2000 |1/17/2001 | 63 45 CH2M HILL
1/Storage  |1/17/2001  [1/29/2001 | 12 (2002b)
1/Recovery [1/29/2001  |2/4/2001 6 4.5 10 390
Table A3
North Reservoir ASR Site, Lee County
Volume (Mgal) Recovery |Recovery
Duration Efficiency |Chloride
Cycle/Phase |Begin End days Recharge [Recovery (% mg/L Reference
Recharge 2/25/2000 |3/10/2000 14 6.179 FDEP monthly
Storage 3/11/2000 |3/17/2000 7 operating reports
Recovery 3/17/2000 |3/18/2000 1 0.6 9.7 250
1/Recharge |7/12/2001 |11/13/2001 | 125 60.4 Water Resource
1/Storage  [11/13/2001 |4/29/2002 | 168 Solutions (2002a) and
monthly operating
1/Recovery  |4/29/2002 |5/14/2002 15 6.6 11 266 reports
2/Recharge |6/24/2002 |2/25/20031 | 209 127.04 D. Acquaviva, written
2/Storage  [2/25/2003 [4/16/2003 | 50 comm. (8 Jul 2003)
2/Recovery  [4/16/2003 |7/31/2003 | 103 23.73 18.6' 272 (7/1/2003)

! Plugged ASR well reduced performance during July 2003.

Table A4
Olga Water Treatment Plant, Lee County ASR System
Volume (Mgal) Recovery |Recovery
Duration Efficiency [Chloride
Cycle/Phase |Begin End days Recharge [Recovery (% mg/L Reference
1/Recharge [7/17/2001 |12/27/2001 | 162 79.7 Water Resource
1/Storage  |12/27/2001 |4/29/2002 | 123 Solutions (2002c)
1/Recovery  [4/29/2002 [6/12/2002 | 44 18.9 24 260 gg‘;gt‘i‘r’]g”:éypms
2/Recharge  [6/24/2002 |1/28/2003 | 215 129.02 D. Acquaviva, written
2/Storage 1/29/2003 |5/7/2003 98 comm. (8 Jul 2003)
2/Recovery |5/7/2003 |7/28/2003 82 35.09 29.2 202 (7/22/2003)
Table A5
Bonita Springs Utilities — San Carlos Estates ASR System
Volume (Mgal) _|Recovery Recovery
Duration Efficiency Chloride
Cycle/Phase |Begin End days Recharge |Recovery |% mg/L Reference
1/Recharge [12/30/1999  |5/23/2000 144 138.149 CH2M HILL (2000c)
1/Storage -- -- 0
1/Recovery  [5/23/2000 6/28/2000 36 4.375 3.17 254
2/Recharge  |9/14/2000 (12/27/2000)" | 104 159.5 M. McNeal, written
2/Storage (12/27/2000) |(4/23/2001) 117 comm. (2 Jul 2003)
2/Recovery  |4/23/2001 5/4/2001 10 9.7 6.1 260

! Cycle 2 recharge rate reduced from 1-2 MGD to 0.216 MGD from Dec 2000 to April 23, 2001.
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Table A6

Corkscrew ASR System, Lee County

Volume (Mgal) Recovery |Recovery
Duration Efficiency [Chloride
Cycle/Phase |Begin End days Recharge|Recovery | % mg/L Reference
1/Recharge |[10/25/1995 [11/1/1995 7 2.001 Reese (2002); Viro Group,
1/Storage  |11/2/1995 [11/3/1995 1 Inc. (1997)
1/Recovery |11/4/1995 |11/14/1995| 10 2.963 | 148 Not reported
2/Recharge |[2/14/1996 |4/30/1996 76 31.3 Reese (2002); Viro Group,
2/Storage  |5/1/1996  |6/3/1996 35 Inc. (1997)
2/Recovery |6/4/1996 10/4/1996 72 22.8 72.8 Not reported
3/Recharge [10/7/1996 [12/10/1996| 63 26.1 Reese (2002); Viro Group,
3/Storage  |12/10/1996 |1/8/1997 30 Inc. (1997)
3/Recovery |1/9/1997 2/12/1997 34 19.8 75.8 Not reported
Postexpansion Cycle Tests
1/Recharge |8/7/2000 12/5/2000 | 120 94.617 Water Resource Solutions
1/Storage  |12/6/2000 |3/19/2001 | 103 (2001)
1/Recovery |3/19/2001 |5/18/2001 60 82.219 86.9 435"
2/Recharge |7/24/2001 |11/15/2001| 114 107.463 Water Resource Solutions
2/Storage | 11/15/2001 [3/20/2002 | 115 (2002d)
2/Recovery |3/20/2002 |5/17/2002 58 106.747 99 432

Note: Postexpansion tests were conducted after site expansion from two to five ASR wells.
' Chloride measured on 14 May 01, 4 days prior to the end of recovery.
2 Chloride measured on 16 May 02, 1 day prior to the end of recovery.

Table A7
Broward County Office of Environmental Services 2A (BCOES2A) Water Treatment Plant
ASR System
Volume (Mgal)  |Recovery [Recovery

Duration Efficiency |Chloride
Cycle/Phase |Begin End days Recharge |Recovery |% mg/L Reference
1/Recharge [7/9/1998  |7/19/1998 |10 22.13 CH2M HILL (1999);
1/Storage __ . 0 Hazen and Sawyer (2002a)
1/Recovery  |7/20/1998 [7/21/1998 | 1 1.5 6.8 168
2/Recharge [|7/27/1998 [10/26/1998 |91 195.835 CH2M HILL (1999);
2/Storage - - 0 Hazen and Sawyer (2002a)
2/Recovery  |10/26/1998 |11/12/1998 |17 36.646 18.7 240
3/Recharge  |11/13/1998 [2/8/1999 |88 185.94 CH2M HILL (1999);
3/Storage 2/9/1999  [2/17/1999 | 9 Hazen and Sawyer (2002a)
3/Recovery  |2/18/1999 |3/11/1999 |21 62.625 33.7 227
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Table A8

Fiveash Water Treatment Plant ASR System, Broward County

Volume (Mgal) _ |Recovery |Recovery

Duration Efficiency|Chloride
Cycle/Phase |Begin End days Recharge |Recovery |% mg/L Reference
1/Recharge |10/12/1999 [10/22/1999| 11 19.499 Reese (2002); Hazen and
1/Storage - - 0 Sawyer (2002b)
1/Recovery  [10/23/1999 [10/23/1999 1 1.04 5.3 212
2/Recharge  |10/25/1999 |12/3/1999 40 75.036 Reese (2002); Hazen and
2/Storage - - 0 Sawyer (2002b)
2/Recovery  |12/3/1999 [12/6/1999 2 47 6.2 160
3a/Recharge |12/7/1999 |3/29/2000 | 112 224.445 Reese (2002); Hazen and
3a/Storage  |3/30/2000 |6/5/2001 | 443 Sawyer (2002b)
3a/Recovery |- -- 0 0 -- --
3b/Recharge [6/6/2001  |2/1/2002 229 413.534 Reese (2002); Hazen and
3b/Storage ' |- - 0 Sawyer (2002b)
3b/Recovery |2/2/2002 |3/21/2002 48 54.2 13.1 244
4/Recharge  [6/19/2002 |(7/18/2002 30 56.097 Hazen and Sawyer (2003);
4/Storage - - 0 monthly operating reports
4/Recovery  |7/19/2002 |10/2/2002 75 34.3 61 260 (2002)
5/Recharge  [10/4/2002 |11/4/2002 30 61.803 Hazen and Sawyer (2003);
5/Storage _ _ 0 ggg'gly operating reports
5/Recovery  [11/5/2002 [1/2/2003 59 37.2 60 242 (1/31/02)
6/Recharge  |5/28/2003 [9/24/2003 | 119 240.6 J. Cargill; written comm.
istorage |- - 0 operating roports (2003)
6/Recovery  |9/24/2003 |[12/28/2003| 95 54.8 22.7 260

' Pump out of service 8/17/2001 to 9/10/2001; injection commenced 9/11/2001 through 3/21/2002.

Table A9

Springtree — City of Sunrise ASR System, Broward County

Volume (Mgal) Recovery [Recovery
Duration Efficiency|Chloride
Cycle/Phase |Begin End days Recharge |[Recovery |% mg/L Reference
1/Recharge |7/29/1999 |8/17/1999 19 20 Montgomery Watson Harza
1/Storage 0 (2002)
1/Recovery |8/18/1999 [8/21/1999 3 4 28 61
2/Recharge |8/22/1999 ]9/30/1999 39 40 Montgomery Watson Harza
2/Storage 9/30/1999 [10/2/1999 2 (2002)
2/Recovery |10/2/1999 |10/12/1999 | 10 11 30 213
3/Recharge |10/13/1999 [11/24/1999 | 39 41 Montgomery Watson Harza
(intermittent) (2002)
3/Storage 0
3/Recovery [11/25/1999 |12/9/1999 14 15 40 220
4/Recharge (12/10/1999 |2/10/2000 62 40 Montgomery Watson Harza
(intermittent) (2002)
4/Storage 2/11/2000 |[3/12/2000 29
4/Recovery |3/13/2000 |3/27/2000 14 15 42 222
5/Recharge |3/28/2000 |9/23/2000 | 107 103 Montgomery Watson Harza
(intermittent) (2002)
5/Storage 9/24/2000 ]10/23/2000 ( 29
5/Recovery  |10/23/2000 |11/23/2000 | 31 32 30 218
6/Recharge |11/24/2000 |5/31/2001 188 187 Montgomery Watson Harza
6/Storage 6/1/2001 10/9/2001 | 130 (2002) and monthly operating
6/Recovery  [10/9/2001 |10/31/2001 | 130 23 22 171 reports
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Table A10

Delray Beach ASR System, Palm Beach County

Sum Volume (Mgal) Recovery |Recovery
Duration|Duration Efficiency |Chloride

Cycle/Phase |Begin End days days Recharge [Recovery |% mg/L Reference

Target 5/23/2000 |8/24/2000 83 83 250

Storage

Volume

Develop.

1/Recharge  |8/25/2000 |9/15/2000 21 63 CH2M HILL (2002a)

1/Storage 9/16/2000 |1/2/2001 110

1/Recovery [1/11/2001 |1/29/2001 18 149 50 79 225

2/Recharge  [1/30/2001 |2/17/2001 18 50 CH2M HILL (2002a)

2/Storage 2/17/2001 |2/21/2001 4

2/Recovery |2/21/2001 |3/10/2001 17 39 47 94 225

3/Recharge  |3/13/2001 |4/1/2001 18 48 CH2M HILL (2002a)

3/Storage 4/1/3001  |4/2/2001 1

3/Recovery |4/2/2001  |4/16/2001 14 33 38 71 200

Target 4/18/2001 |5/7/2001 19 19 50

Storage

Volume

Develop.

4/Recharge  |5/7/2001  |5/29/2001 22 52 CH2M HILL (2002a)

4/Storage - - -

4/Recovery  |5/29/2001 |6/19/2001 22 44 54 104 170

Target 6/19/2001 |7/4/2001 15 15 20

Storage

Volume

Develop.

5/Recharge |7/4/2001  |7/24/2001 20 49 CH2M HILL (2002a)

5/Storage -- -

5/Recovery  |7/24/2001 |8/15/2001 24 44 52 106 170

6/Recharge  |8/22/2001 9/17/2001 26 70.567 D. Stryjek, oral

6/Storage 9/18/2001 |9/20/2001 2 ggggn (31 Mar

6/Recovery  |9/21/2001 |10/15/2001 | 22 50 55.36 78.4 225 )

7/Recharge [10/16/2001 |11/19/2001 | 34 73.065 Cycle incomplete-

7/Storage _ _ 0 pump failed (D.
Stryjek, oral comm.

7/Recovery  |11/20/2001 {11/30/2001 | 11 45 20.632 - 62 31 Mar 2003)

Table A11

Boynton Beach ASR System, Palm Beach County

Volume (Mgal) Recovery |Recovery
Duration Efficiency |Chloride

Cycle/Phase |Begin End days Recharge |Recovery |% mg/L Reference

1/Recharge |10/21/1992 |11/3/1992 13 12.52 Peter Mazzella, written comm.

1/St - - 0 (9 Apr 2003); CH2M HILL

orage (1993)

1/Recovery  |11/3/1992 ]11/10/1992 7 9.58 76.5 756

6/Recharge |2/24/1994 14/21/1994 57 61.19 Monthly operating reports

6/Storage 4/21/1994 |6/16/1994 56

6/Recovery  |6/16/1994 |7/25/1994 39 47.71 77.9 306

7/Recharge |7/25/1994 |9/7/1994 44 60.06 Monthly operating reports

7/Storage 9/7/1994  |19/9/1995 | 124

7/Recovery  |1/7/1995  [2/13/1995 35 20.05 33.3 302

Appendix A Cycle Test Schedules A5
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